

SI 1.1: Pure MTX ($1.0 \ \mu g \ mL^{-1}$) spectra (excitation and emission) in aqueous buffered solution (pH 4).

SI 1.2: Full spectra (excitation and emission) of the fully optimized MTX-EosinY system conditions at different MTX concentrations within the operating range.

SI 2.1: Effect of buffer volume on the fluorescence quenching of the formed association complex between MTX ($1.0 \ \mu g \ mL^{-1}$) and Eosin Y.

SI 2.2: Excitation and emission spectra at different pH values and buffer volumes for the formed association complex between MTX ($1.0 \ \mu g \ mL^{-1}$) and Eosin Y.

SI 2.3: Excitation and emission spectra at different volumes of EY (0.02% w/v) for the formed association complex between MTX (1.0 μ g mL⁻¹) and Eosin Y.

SI 3: Effect of buffer type on the fluorescence quenching of the formed association complex between MTX ($1.0 \ \mu g \ mL^{-1}$) and Eosin Y.

SI 4: Effect of reaction time on the fluorescence quenching of the formed association complex between MTX ($1.0 \ \mu g \ mL^{-1}$) and Eosin Y.

SI 5: Effect of stability time on the fluorescence quenching of the formed association complex between MTX (1.0 μ g mL⁻¹) and Eosin Y.

SI 6.1: Effect of diluting solvent on the fluorescence quenching of the formed association complex between MTX ($1.0 \ \mu g \ mL^{-1}$) and Eosin Y.

SI 6.2: Full excitation and emission spectra showing the effect of different diluting solvents on the formed association complex between MTX (1.0 μ g mL⁻¹) and Eosin Y.

SI 7: FT-IR spectra for MTX and formed MTX-EY complex

SI 8: Job's plot for association complex formation between MTX and eosin using an equimolar concentration $(2.8 \times 10^{-4} \text{ M})$ of master solutions.

SI 9: Stern–Volmer plot describing Eosin Y quenching caused MTX.

SI 10: Calibration curves for MTX in plasma.

SI 11: Calibration curves for MTX in urine

SI Table 1: Comparable cases showing quenching of fluorescence upon association complex formation with MTX and other compounds with Eosin Y and other fluorescence active dye.

drug	Dye or reagent	method	mechanism	application	$\frac{\lambda_{ex}}{\lambda_{em}}$	Ref.
MTX	MSA- CdT- QDs as fluoresc ence probe	Fluorimetry	Fluorescence quenching	Pure form and human serum sample	365/ 500- 700	1
MTX	AuNPs probe by nanomet al surface energy transfer.	Fluorimetry	quenching nature of the MTX–	Live cells biological samples	633	2
MTX	molybdat e	RRS	RRS based on an ion- association complex between MTX and molybdate	serum and urine	365/365	3
ABZ, FBZ & MBZ	Erythrosi ne B	Fluorimetry	Fluorescence quenching	Bulk powder, tables, suspension and human plasma	517/544	4-6
Mebeverine	Eosin y	Fluorimetry	Fluorescence quenching	commercial tablets	390/540	7
Fluoxetine and paroxetine	Eosin Y	Fluorimetry	Fluorescence quenching	Bulk powder and pharmaceutical formulations	301/545	8
Amlodipine and nicardipine	Eosin Y	fluorimetry	Fluorescence quenching	Powder and tablets	549	9

SI Table 2: polarity index and dielectric constant for solvents used.

Solvent	Polarity index	Dielectric constant
Water	9.0	80.2
Methanol	6.6	32
Acetone	5.4	20.7
Ethanol	5.2	24.8
Dioxane	4.8	2.2
2-propanol	4.2	19.9

Technique	Range	Ref
HPLC	$1-2000 \text{ ng mL}^{-1} \text{ (serum)}$	10
HPLC	5-1000 ng ml ⁻¹ (plasma)	11
	25-2000 ng ml ⁻¹ (mouse tissue)	
HPLC	5–1000 ngml ⁻¹ (plasm)	12
	25–2500 ngml ⁻¹ (liver)	
	$12.5-2500 \text{ ng ml}^{-1}$ (other tissue)	
СЕ	$7.0 \times 10^{-8} - 1.0 \times 10^{-6} \text{ M}$	13
CL	$5.0 \times 10^{-9} - 1.0 \times 10^{-7} \text{ g/ml}$	14
Polarography	5 x 10 ⁻ 7–2.5 x 10 ⁻⁵ M	15
Voltammetry	2.0×10^{-7} - $6.0 \times 10^{-6} \text{ mol dm}^{-3}$	16
ELISA	0.25-50 ng ml ⁻¹	17
Spectrophotometry	4-10 mg L ⁻¹	18
Spectrofluorimetry	0.0675–0.337 μM	1
SERRS	$2.5 \times 10^{-9} - 1 \times 10^{-6}$ M.	19
Spectrofluorimetry	70–2500 ng ml ⁻¹	Current method
-	$0.3-2 \ \mu g \ ml^{-1}$ (biofluids)	

SI Table 3: Comparison between the sensitivity of the current fluorescence method and the other techniques in utilized in the determination of MTX.

- 1. A. Mohammadinejad, Z. Es' haghi, K. Abnous and S. A. Mohajeri, *Journal of Luminescence*, 2017, 190, 254-260.
- 2. E.-O. Ganbold, J. Yoon, D. Kim and S.-W. Joo, *Physical Chemistry Chemical Physics*, 2015, 17, 3019-3023.
- 3. F. Wang, Z. Liu, S. Liu and X. Hu, *Chemical Journal of Chinese Universities*, 2006, 27, 79-81.
- 4. S. M. Derayea, A. A. Hamad, D. M. Nagy, D. A. Nour-Eldeen, H. R. H. Ali and R. Ali, *Journal of Molecular Liquids*, 2018, 272, 337-343.
- 5. S. M. Derayea, A. A. Hamad, R. Ali and H. R. H. Ali, *Microchemical Journal*, 2019, 149, 104024.
- 6. A. A. Hamad, R. Ali, H. R. H. Ali, D. M. Nagy and S. M. Derayea, *RSC advances*, 2018, 8, 5373-5381.
- 7. S. M. Derayea, Analytical Methods, 2014, 6, 2270-2275.
- 8. S. Derayea, M. Omar, B. Mohammed and R. Ali, *Analytical Chemistry Letters*, 2016, 6, 508-517.
- 9. S. M. Derayea, H. F. Askal, O. H. Abdel-Megeed and M. A. El Hamd, *Journal of Applied Pharmaceutical Science*, 2012, 2, 84-89.
- 10. G. Micelli, A. Lozupone, M. Quaranta, A. Donadeo, M. Coviello and V. Lorusso, *Biomedical Chromatography*, 1992, 6, 168-171.
- 11. J. L. Johnson, A. Ahmad, S. Khan, Y.-F. Wang, A. W. Abu-Qare, J. E. Ayoub, A. Zhang and I. Ahmad, *Journal of Chromatography B*, 2004, 799, 149-155.
- 12. G. An and M. E. Morris, *Journal of pharmaceutical and biomedical analysis*, 2010, 51, 750-753.
- 13. S. Han and H. Wang, Journal of Chromatography B, 2010, 878, 2901-2904.
- 14. H. Yao, M. Zhang, W. Zeng, X. Zeng and Z. Zhang, *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 2014, 117, 645-650.
- 15. S. Golabi and V. Hassan-Zadeh, *Talanta*, 1996, 43, 397-406.
- 16. Y. Mao, J. Hu, Q. Li and P. Xue, *Analyst*, 2000, 125, 2299-2302.
- 17. S. U. Flavell and D. J. Flavell, *Journal of immunological methods*, 1988, 115, 179-185.
- 18. Z. Zhou, C. Wu, L. Zhang, L. Li and X. He, *Chinese Journal of Pharmaceutical Analysis*, 1997, 17, 403-405.
- 19. C. McLaughlin, D. MacMillan, C. McCardle and W. E. Smith, *Analytical chemistry*, 2002, 74, 3160-3167.