Supplementary Information

PNA Microprobe for Label-Free Detection of Expanded Trinucleotide Repeats

Narges Asefifeyzabadi,¹ Grace Durocher,¹ Kizito-Tshitoko Tshilenge,² Tanimul Alam,² Lisa M. Ellerby,² Mohtashim H. Shamsi¹*

 Table S1. Single-stranded and double-stranded repeat sequences.

Repeat type	Sequence	#Repeats
PNA-CTG-6	HS-C ₆ H ₁₂ -CTG CTG CTG CTG CTG CTG	6
ssCAG-6	5'-CAG GAG CAG CAG CAG CAG -3'	6
ssCAG-10	5'-CAG GAG CAG CAG CAG CAG CAG CAG CAG CAG-3'	10
ssCAG-15	5'-CAG CAG GAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG-3'	15
ssCAG-20	5'-CAG CAG GAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG CAG-3'	20

Extraction of Total RNA from Neural Stem Cells (NSCs). For RNA extraction of prepatterned activin A treated human NSCs, total RNA was isolated according to the manufacturer's instructions using the ISOLATE II RNA Mini Kit (Bioline, BIO-52072), and eluted in 50 µl of RNase-free water and store at - 80°C. The quantity and quality of RNA were assessed by measuring the optical density (OD) at 260 nm and 280 nm using a NanoDrop® ND-1000 Spectrophotometer (Thermo Fisher, MA, USA). The RNA quality of the sample was measured by monitoring the absorbance at A260/280 and A260/230 ratios. The extraction of CAG containing total RNA has been previously reported.¹⁻³ The HD+ RNA had 72CAG/19CAG repeats, i.e. there is one allele with 72CAG and the other one with 19CAG. While the control sample (HD-) was generated from a genetic correction of HD72 by decreasing the CAG length to a

normal repeat of 21CAG. Therefore, the control sample (HD-) had 21CAG/19CAG repeats which leads to a normal phenotype. The extracted RNA was stored at -80 °C. For sample preparation, the RNA was thawed in cool environment and then diluted to working solutions of 10 ng· μ L⁻¹ and 1 ng· μ L⁻¹ in the working buffer of 100 μ M Tris containing 20 mM MgCl₂ and 200 mM NaCl (pH = 8.5).

HD CAG PCR. The HD- (21CAG) and HD+ (72CAG) repeats were confirmed by performing PCR in the NSC cells. The HD- and HD+ NSC cells were purified with DNeasy Blood and Tissue Kit (Cat. No. 69504). The HD PCR mix is composed of 10 ng· μ L⁻¹ of sample DNA (1 μ L), GoTaq Green Master Mix (10 μ L), DMSO (0.5 μ L), 10 μ M CAG-1 Forward primer 1 μ L, 10 μ M HU3R Reverse Primer 1ul, Nuclease free water 6.5 μ L (20 μ L total). CAG-1 (ATGAAGGCCTTCGAGTCCCTCAAGTCCTTC) and HU3R (GGCGGCTGAGGAAGCTGAGGA). The PCR program used the following parameters: 96 °C, 10 min-> 95 °C, 30 sec|65 °C, 30 sec|72 °C, 1 min 30 sec (35 cycles) -> 72°C, 10 min -> 16 °C, infinite. 2% Agarose gel (2 g PCR agar in 100 mL 1XTAE buffer+ 1 μ l Gelred) was used for electrophoresis and 10 μ l nuclease free water was added to 10 μ l PCR mix and loaded for gel run for 20-25min, 100V with a 100 bp PCR marker. The image was taken using Bio-Rad imager with Gelred protocol.

Figure S1. PCR of the CAG region of HD- (21CAG) and HD+ (72CAG). The expected product of 146 base pair was obtained for the HD- (21CAG). The expected products of around \sim 150 basepair and \sim 300 basepair were found for the HD+ (72CAG) DNA sample. The size of the molecular weight marker is in base pair for the x-axis.

Table S2. EIS extracted parameters of Figure 1. The average values with standard error of modified Randle's equivalent circuit elements. The errors were calculated for $N \ge 4$ separate measurements.

Sangan Lavang	Solution	Constant Phase	onstant Phase Charge Transf Equivalent Resistance		Warburg Impedance	Relative Error
Sensor Layers	Resistance	Equivalent				for R _{ct}
	R _s	CPE	n	R _{ct}	W	0/ DSD
	kΩ	μF		kΩ	kΩ	70KSD
Bare gold	0.05 (0.004)	5.5 (1.6)	0.90	1.2 (0.3)	$0.008~(0.01) \times 10^8$	25.0
PNA	0.05 (0.002)	0.22 (0.03)	0.88	5.6 (0.7)	$0.003~(0.004) \times 10^{12}$	12.5
MCH	0.05 (0.01)	0.23 (0.18)	0.80	17.9 (3.6)	$0.002 (0.002) \times 10^{12}$	20.1
PNA-MCH	0.05 (0.001)	0.20 (0.05)	0.89	27.8 (0.5)	$0.005~(0.006) \times 10^9$	1.7

Figure S2. a) Nyquist plot of PNA probe (CTG-6) obtained at various incubation time. **b)** Nyquist plot of PNA probe (CTG-6) obtained at various concentration of the probe.

Figure S3. a) Nyquist plots of time of hybridization with the target (CAG-6). b) Percent change in R_{ct} after hybridization of 10 pM CAG-6 target. Error bar represents the standard deviation for $N \ge 4$.

Table S3. T-test to confirm significant difference between the absolute R_{ct}						
response of probe and the HD+ RNA sample						
	PNA	HD+				
#	$R_{ct} \left(k \Omega \right)$	$R_{ct} (k\Omega)$				
1	27.3	23.3				
2	27.7	23.3				
3	28.2	23.9				
4	30.5	25.3				
Average	28.4	24.0				
Standard Deviation	1.4	0.9				
Variance	2.0	0.9				
p-value, F-Test	0.511	> 0.05, Equal variance				
p-value, one tail T-Test	0.00099	< 0.05, Significant difference				

- J. Voisin, F. Farina, S. Naphade, M. Fontaine, K. T. Tshilenge, C. Galicia Aguirre, A. Lopez-Ramirez, J. Dancourt, A. Ginisty, S. Sasidharan Nair, K. Lakshika Madushani, N. Zhang, F. X. Lejeune, M. Verny, J. Campisi, L. M. Ellerby and C. Neri, *Aging Cell*, 2020, **19**, e13226.
- 2. K. L. Ring, M. C. An, N. Zhang, R. N. O'Brien, E. M. Ramos, F. Gao, R. Atwood, B. J. Bailus, S. Melov, S. D. Mooney, G. Coppola and L. M. Ellerby, *Stem Cell Reports*, 2015, **5**, 1023-1038.
- 3. M. C. An, N. Zhang, G. Scott, D. Montoro, T. Wittkop, S. Mooney, S. Melov and L. M. Ellerby, *Cell Stem Cell*, 2012, **11**, 253-263.