Supporting Information for

Aluminium alkyl complexes with imidazolin-2-phosphanamidinate ligand as precursor for catalytic guanylation reactions of carbodiimides

Contents

- 1. Table TS1. Crystallographic data and refinement parameters of 1b, 1c, 2a, 2b and 2c.
- 2. Figure FS1. ¹H NMR (300 MHz, 25 °C, C_6D_6) spectrum of **1b**.
- 3. Figure FS2. ³¹P{¹H} NMR (121.5 MHz, 25 °C, C₆D₆) spectrum of **1b**.
- 4. Figure FS3. ¹³C{¹H} NMR (75 MHz, 25 °C, C₆D₆) spectrum of **1b**.
- 5. Figure FS4. ¹H NMR (300 MHz, 25 °C, C_6D_6) spectrum of **1c**.
- 6. Figure FS5. ${}^{31}P{}^{1}H$ NMR (121.5 MHz, 25 °C, C₆D₆) spectrum of 1c.
- 7. Figure FS6. ¹³C{¹H} NMR (75 MHz, 25 °C, C_6D_6) spectrum of **1c**.
- 8. Figure FS7. ¹H NMR (300 MHz, 25 °C, C_6D_6) spectrum of **2a**.
- 9. Figure FS8. ${}^{31}P{}^{1}H$ NMR (121.5 MHz, 25 °C, C₆D₆) spectrum of **2a**.
- 10. Figure FS9. ¹³C{¹H} NMR (75 MHz, 25 °C, C₆D₆) spectrum of **2a**.
- 11. Figure FS10. ¹H NMR (300 MHz, 25 °C, C₆D₆) spectrum of **2b**.
- 12. Figure FS11. ³¹P{¹H} NMR (121.5 MHz, 25 °C, C₆D₆) spectrum of **2b**.
- 13. Figure FS12. ¹³C{¹H} NMR (75 MHz, 25 °C, C₆D₆) spectrum of **2b**.
- 14. Figure FS13. ¹H NMR (300 MHz, 25 °C, C₆D₆) spectrum of **2c**.
- 15. Figure FS14. ³¹P{¹H} NMR (121.5 MHz, 25 °C, C₆D₆) spectrum of **2c**.
- 16. Figure FS15. ¹³C{¹H} NMR (75 MHz, 25 °C, C₆D₆) spectrum of **2c**.
- 17. NMR data for guanidine products **3a-3v**.
- 18. Figure FS16 Figure FS53 NMR spectra of the products **3a-3v**.
- Figures FS54-FS55 ¹H and ³¹P NMR (300 MHz, 25 °C, C₆D₆) spectrum of stoichiometric reaction between complex 2a and *p*-anisidine (1:2).
- 20. Figures FS56-FS57 ¹H and ³¹P NMR (300 MHz, 25 °C, C₆D₆) spectrum of stoichiometric reaction between complex **2a** and piperidine (1:2).
- 21. References

Crystal parameters	1b	1c	
CCDC NO.	2124041	2124043	
Empirical formula	C ₃₉ H ₄₇ N ₄ P	C ₂₉ H ₄₃ N ₄ P	
Formula weight	602.81	478.66	
Т(К)	249.99(10)	293(2)	
λ (Å)	0.71073	0.71073	
Crystal system	Triclinic	Monoclinic	
Space group	Pī	$P2_1/n$	
a (Å)	9.4611(2)	10.4218(5)	
<i>b</i> (Å)	12.4141(3)	14.9253(7)	
<i>c</i> (Å)	16.7883(4)	20.5378(9)	
α (°)	101.570(2)	90	
β (°)	100.081(2)	100.693(5)	
γ (°)	111.127(2)	90	
$V(Å^3)$	1734.64(7)	3139.2(3)	
Ζ	2	16	
D_{calc} (g cm ⁻³)	1.158	1.072	
μ (mm ⁻¹)	0.112	0.111	
F(000)	652	1104	
Theta range for data collection	2.617 to 28.908 deg.	2.9100 to 26.3390 deg.	
Limiting indices	-12 <= h <= 12,	-13<=h<=13,	
	-16 <= k <=16,	-18<=k<=20,	
	-20 <=l <= 22	-22<=1<=27	
Reflections collected / unique	27111 / 8000 [R(int) = 0.0378]	28830 / 7361 [R(int) = 0.0552]	
Completeness of theta	99.80 %	99.64 %	
Absorption correction	Multi-scan	Multi-scan	
Max. and min. transmission	1.00000 and 0.76682	1.00000 and 0.71528	
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F ²	
Data / restraints / parameters	8000 / 0 / 410	7361 / 0 / 338	
Goodness-of-fit on F ²	1.084	1.045	
Final R indices [I>2Sigma(I)]	R1 = 0.0461,	R1 = 0.0899,	

TS1. Crystallographic data and refinement parameters of 1b and 1c.

	wR2 = 0.1275	wR2 = 0.2664
R indices (all data)	R1 = 0.0571,	R1 = 0.1174,
	wR2 = 0.1344	wR2 = 0.2856

TS1. (contd). Crystallographic data and refinement parameters of 2a, 2b and 2c.

Crystal parameters	2a	2b	2c
CCDC NO.	2124040	2124042	2124039
Empirical formula	C ₄₇ H ₆₄ N ₄ PAl	C ₄₁ H ₅₂ N ₄ PA1	C ₃₁ H ₄₈ N ₄ Pal
Formula weight	743.01	658.85	534.71
Т(К)	298	250(10)	293(2)
λ (Å)	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Triclinic	Monoclinic
Space group	$P2_1/n$	Pī	<i>P</i> 2 ₁ /c
a (Å)	13.5229(5)	10.2350(2)	15.5979(6)
<i>b</i> (Å)	18.5921(8)	19.8700(3)	10.9206(4)
<i>c</i> (Å)	18.0626(8)	20.5541(4)	18.8109(6)
α(°)	90	99.080(2)	90
β (°)	100.669(4)	91.255(2)	100.611(3)
γ (°)	90	100.416(2)	90
$V(Å^3)$	4462.8(3)	4054.20(13)	3149.4(2)
Ζ	4	2	4
D_{calc} (g cm ⁻³)	1.104	1.111	1.128
μ (mm ⁻¹)	0.116	0.122	0.140
F(000)	1604	1458	1160
Theta range for data collection	3.0270 to 27.7710 deg.	2.641 to 29.080	3.2390 to 26.8690 deg.
Limiting indices	-14<=h<=18,	-13<=h <=12,	-20<=h<=19,
	-23<=k<=25,	-24 <= k <=26,	-14<=k<=14,
	-24<=1<=18	-27 <= 1 <= 27	-24<=l<=21
Reflections collected / unique	39839 / 10308 [R(int) =	89802 / 19084 [R(int)	25063 / 7205 [R(int) =
	0.0744]	= 0.0314]	0.0402]
Completeness of theta	99.71 %	99.80 %	99.13 %
Absorption correction	Multi-scan	Multi-scan	Multi-scan

Max. and min. transmission	1.00000 and 0.95218	1.00000 and 0.88174	1.00000 and 0.82770
Refinement method	Full-matrix least-	Full-matrix least-	Full-matrix least-
	squares on F ²	squares on F ²	squares on F ²
Data / restraints / parameters	10308 / 24 / 497	19084 / 0 /898	7205 / 0 / 346
Goodness-of-fit on F ²	1.051	1.050	1.055
Final R indices [I>2Sigma(I)]	R1 = 0.0682, wR2 =	R1 = 0.0424, wR2 =	R1 = 0.0432, wR2 =
	0.1888	0.1150	0.1189
R indices (all data)	R1 = 0.0916, wR2 =	R1 = 0.0579, wR2 =	R1 = 0.0583, wR2 =
	0.2038	0.1224	0.1271

Figure FS1. ¹H NMR (300 MHz, 25 °C, C_6D_6) spectrum of 1b.

Figure FS2. $^{31}P\{^{1}H\}$ NMR (121.5 MHz, 25 °C $C_6D_6)$ spectrum of 1b.

Figure FS3. $^{13}C\{^{1}H\}$ NMR (75 MHz, 25 °C, $C_{6}D_{6})$ spectrum of 1b.

Figure FS4. ¹H NMR (300 MHz, 25 °C, C_6D_6) spectrum of 1c.

Figure FS5. ${}^{31}P{}^{1}H$ NMR (121.5 MHz, 25 °C, C₆D₆) spectrum of 1c.

Figure FS6. ¹³C{¹H} NMR (75 MHz, 25 °C, C_6D_6) spectrum of 1c.

7.36 7.32 7.32 7.32 7.116 7.10 7.275 7.275 7.275 7.275 7.275 7.275 7.275 7.275 7.275 7.275 7.275 7.275 7.775 7.

1.05 1.05 1.165 1.137 1.137 1.137 1.137 1.138 1.138 1.125 1.125 1.103 1.10

Figure FS7. ¹H NMR (300 MHz, 25 °C, C_6D_6) spectrum of 2a.

20 0 -20 f1 (ppm) 240 220 200 180 160 140 120 100 -120 -140 -160 -180 -200 -220 -240 80 60 40 -40 -60 -80 -100

Figure FS8. ³¹P{¹H} NMR (121.5 MHz, 25 °C, C₆D₆) spectrum of **2a**.

Figure FS9. ¹³C{¹H} NMR (75 MHz, 25 °C, C_6D_6) spectrum of 2a.

Figure FS10. ¹H NMR (300 MHz, 25 °C, C_6D_6) spectrum of 2b.

Figure FS11. ${}^{31}P{}^{1}H$ NMR (121.5 MHz, 25 °C, C₆D₆) spectrum of **2b**.

Figure FS12. ¹³C{¹H} NMR (75 MHz, 25 °C, C_6D_6) spectrum of 2b.

Figure FS13. ¹H NMR (300 MHz, 25 °C, C_6D_6) spectrum of 2c.

Figure FS14. $^{31}P\{^{1}H\}$ NMR (121.5 MHz, 25 °C, $C_6D_6)$ spectrum of 2c.

Figure FS15. ¹³C{¹H} NMR (75 MHz, 25 °C, C₆D₆) spectrum of 2c.

NMR data of guanidine products:

N-(2-bromophenyl)-N', N"-diisopropylguanidine (3a)

Yield: 88%. ¹H-NMR (300 MHz, 25 °C, CDCl₃): $\delta_{\rm H}$ 7.53 (d, J = 9.0 Hz, 1H), 7.20 - 7.15 (m, 1H), 6.89 (d, J = 6.0 Hz, 1H), 6.82 - 6.77 (m, 1H), 3.81 - 3.73 (m, 2H), 3.46 (br, 2H), 1.18 (d, J = 6.0 Hz, 12H) ppm. ¹³C{¹H} NMR (75 MHz, 25 °C, CDCl₃): $\delta_{\rm c}$ 149.78, 148.55, 133.12, 128.28, 125.06, 122.83, 119.49, 43.42, 23.57 ppm. The NMR data are in accordance with the literature.¹

N-(4-chlorophenyl)-N', N"-diisopropylguanidine (3b)

Yield: 84%. ¹H NMR (300 MHz, 25 °C, CDCl₃): $\delta_{\rm H}$ 7.19 (d, J = 6.0 Hz, 2H), 6.78 (d, J = 9.0 Hz, 2H), 3.76 - 3.72 (m, 2H), 3.53 (br, 2H), 1.16 (d, J = 6.0 Hz, 12H) ppm. ¹³C{¹H} NMR (75 MHz, 25 °C, CDCl₃): $\delta_{\rm c}$ 150.32, 149.17, 129.32, 126.32, 124.92, 43.33, 23.42 ppm. The NMR data are in accordance with the literature.²

N-(4-nitrophenyl)-N', N"-diisopropylguanidine (3c)

Yield: 78%. ¹H NMR (300 MHz, 25 °C, CDCl₃): $\delta_{\rm H}$ 8.09 (d, J = 9.0 Hz, 2H), 6.89 (d, J = 9.0 Hz, 2H), 3.81 (br, 4H), 1.19 (d, J = 6.0 Hz, 12H) ppm. ¹³C{¹H} NMR (75 MHz, 25 °C, CDCl₃): $\delta_{\rm c}$ 158.45, 150.58, 141.06, 125.72, 122.92, 43.56, 23.36 ppm. The NMR data are in accordance with the literature.²

N-phenyl-N', N"-diisopropylguanidine (3d)

Yield: 83%. ¹H-NMR (300 MHz, 25 °C, CDCl₃): $\delta_{\rm H}$ 7.26 - 7.22 (m, 2H), 6.95 - 6.90 (m, 1H), 6.87 - 6.84 (m, 2H), 3.81 - 3.73 (m, 2H), 3.56 (br, 2H), 1.16 (d, *J* = 6.0 Hz, 12H) ppm. ¹³C{¹H} NMR (75 MHz, 25 °C, CDCl₃): $\delta_{\rm c}$ 150.43, 150.24, 129.36, 123.66, 121.45, 43.32, 23.47 ppm. The NMR data are in accordance with the literature.²

N-(4-isopropylphenyl)-*N'*, *N"*-diisopropylguanidine (3e)

Yield: 82%. ¹H NMR (300 MHz, 25 °C, CDCl₃): $\delta_{\rm H}$ 7.09 (d, J = 9.0 Hz, 2H), 6.76 (d, J = 6.0 Hz, 2H), 3.79 - 3.71 (m, 2H), 2.88 - 2.79 (m, 1H), 1.22 (d, J = 9.0 Hz, 6H), 1.14 (d, J = 6.0 Hz, 12H) ppm. ¹³C{¹H} NMR (75 MHz, 25 °C, CDCl₃): $\delta_{\rm c}$ 150.22, 147.72, 141.57, 127.14, 123.13, 43.21, 33.43, 24.21, 23.37 ppm. The NMR data are in accordance with the literature.²

N-(2,4,6-trimethylphenyl)-*N'*, *N"*-diisopropylguanidine (3f)

Yield: 75%. ¹H NMR (300 MHz, 25 °C, CDCl₃): $\delta_{\rm H}$ 6.79 (s, 2H), 4.09 (bs, 2H), 3.36 (br, 2H), 2.22 (s, 3H), 2.06 (s, 6H), 1.14 (br, 12H) ppm. ¹³C{¹H} NMR (75 MHz, 25 °C, CDCl₃): $\delta_{\rm c}$ 148, 143.62, 130.65, 130.53, 128.62, 43.10, 23.64, 20.80, 18.19 ppm. The NMR data are in accordance with the literature.³

N-(4-methoxyphenyl)-N', N"-diisopropylguanidine (3g)

Yield: 88%. ¹H NMR (300 MHz, 25 °C, CDCl₃): $\delta_{\rm H} 6.82 - 6.74$ (m, 4H), 3.76 (s, 3H), 3.52 (br, 2H), 1.14 (d, J = 6.0 Hz, 12H) ppm. ¹³C{¹H} NMR (75 MHz, 25 °C, CDCl₃): $\delta_{\rm c} 154.58$, 150.72, 143.34, 124.27, 114.66, 55.47, 43.24, 23.43 ppm. The NMR data are in accordance with the literature.⁴

N-(2-bromophenyl)-*N'*, *N"*-ditertbutylguanidine (3h)

Yield: 83%. ¹H NMR (300 MHz, 25 °C, CDCl₃): $\delta_{\rm H}$ 7.54 - 7.52 (m, 1H), 7.20 - 7.14 (m, 1H), 6.83 - 6.74 (m, 2H), 3.62 (br, 2H), 1.36 (s, 18H) ppm. ¹³C{¹H} NMR (75 MHz, 25 °C, CDCl₃): $\delta_{\rm c}$ 149.72, 148.43, 133.17, 128.19, 124.31, 122.50, 119.24, 51.02, 30.27 ppm.

N-(4-chlorophenyl)-*N'*, *N"*-ditertbutylguanidine (3i)

Yield: 85%. ¹H NMR (300 MHz, 25 °C, CDCl₃): $\delta_{\rm H}$ 7.21 (d, J = 9.0 Hz, 2H), 6.74 (d, J = 9.0 Hz, 2H), 3.69 (br, 2H), 1.35 (s, 18H) ppm. ¹³C{¹H} NMR (75 MHz, 25 °C, CDCl₃): $\delta_{\rm c}$ 150.34, 149.45, 129.26, 126.09, 124.43, 50.92, 30.18 ppm. The NMR data are in accordance with the literature.⁵

N-(4-nitrophenyl)-*N'*, *N"*-ditertbutylguanidine (3j)

Yield: 75%. ¹H NMR (300 MHz, 25 °C, CDCl₃): $\delta_{\rm H}$ 8.06 (d, J = 9.0 Hz, 2H), 6.62 (d, J = 9.0 Hz, 2H), 4.43 (br, 2H), 1.27 (s, 18H) ppm. ¹³C{¹H} NMR (75 MHz, 25 °C, CDCl₃): $\delta_{\rm c}$ 152.69, 126.48, 113.47, 55.05, 31.44 ppm.

N-phenyl-*N'*, *N"*-ditertbutylguanidine (3k)

Yield: 81%. ¹H NMR (300 MHz, 25 °C, CDCl₃): $\delta_{\rm H}$ 7.16 - 7.11 (m, 2H), 6.82 - 6.77 (m, 1H), 6.70 - 6.67 (m, 2H), 3.57 (br, 2H), 1.23 (s, 18H) ppm. ¹³C{¹H} NMR (75 MHz, 25 °C, CDCl₃): $\delta_{\rm c}$ 150.79, 150.16, 129.31, 123.18, 121.22, 50.87, 50.78, 30.19 ppm. The NMR data are in accordance with the literature.⁵

N-(4-methoxyphenyl)-N', N"-ditertbutylguanidine (31)

Yield: 83%. ¹H NMR (300 MHz, 25 °C, CDCl₃): $\delta_{\rm H}$ 6.81 (d, J = 9.0 Hz, 2H), 6.71 (d, J = 9.0 Hz, 2H), 3.76 (s, 3H), 3.66 (br, 2H), 1.32 (s, 18H) ppm. ¹³C{¹H} NMR (75 MHz, 25 °C, CDCl₃): $\delta_{\rm c}$ 154.47, 150.73, 143.96, 123.79, 114.70, 55.57, 50.80, 30.18 ppm.

N-(4-isopropylphenyl)-*N'*, *N"*-ditertbutylguanidine (3m)

Yield: 81%. ¹H NMR (300 MHz, 25 °C, CDCl₃): $\delta_{\rm H}$ 7.11 (d, J = 6.0 Hz, 2H), 6.73 (d, J = 6.0 Hz, 2H), 3.71 (br, 2H), 2.90 - 2.81 (m, 1H), 1.35 (s, 18H), 1.24 (d, J = 6.0 Hz, 6H) ppm. ¹³C{¹H} NMR

(75 MHz, 25 °C, CDCl₃): *δ*_c 150.18, 148.23, 141.48, 127.18, 122.77, 115.28, 50.81, 33.54, 30.19, 24.32 ppm.

N-(2-bromophenyl)-*N*', *N*"-dicyclohexylguanidine (3n)

Yield: 85%. ¹H NMR (300 MHz, 25 °C, CDCl₃): $\delta_{\rm H}$ 7.53 (d, J = 9.0 Hz, 1H), 7.17 (t, J = 7.5 Hz, 1H), 6.90 (d, J = 6.0 Hz, 1H), 6.79 (t, J = 7.5 Hz, 1H), 3.42 (br, 2H), 2.04 (d, J = 12 Hz, 4H), 1.71 - 1.57 (m, 6H), 1.41 - 1.29 (m, 4H), 1.20 - 1.05 (m, 6H) ppm. ¹³C{¹H} NMR (75 MHz, 25 °C, CDCl₃): $\delta_{\rm c}$ 149.69, 148.69, 133.16, 128.30, 125.20, 122.85, 119.65, 50.31, 34.00, 25.80, 25.03 ppm. The NMR data are in accordance with the literature.²

N-(4-chlorophenyl)-*N'*, *N"*-dicyclohexylguanidine (30)

Yield: 86%. ¹H-NMR (300 MHz, 25 °C, CDCl₃): $\delta_{\rm H}$ 7.18 (d, J = 9.0 Hz, 2H), 6.77 (d, J = 9.0 Hz, 2H), 3.38 (br, 2H), 1.98 (d, J = 9.0 Hz, 4H), 1.70 - 1.57 (m, 6H), 1.40 - 1.28 (m, 4H), 1.20 - 1.02 (m, 6H) ppm. ¹³C{¹H} NMR (75 MHz, 25 °C, CDCl₃): $\delta_{\rm c}$ 150.20, 149.28, 129.31, 126.31, 125.02, 50.21, 33.88, 25.76, 25.00 ppm. The NMR data are in accordance with the literature.²

N-(4-nitrophenyl)-*N'*, *N"*-dicyclohexylguanidine (3p)

Yield: 77%. ¹H NMR (300 MHz, 25 °C, CDCl₃): $\delta_{\rm H}$ 8.08 (d, J = 6.0 Hz, 2H), 6.87 (d, J = 6.0 Hz, 2H), 3.41 (bs, 2H), 1.96 (bs, 4H), 1.83-1.58 (m, 6H), 1.34 - 1.31 (m, 4H), 1.15 (bs, 6H) ppm. ¹³C{¹H} NMR (75 MHz, 25 °C, CDCl₃): $\delta_{\rm c}$ 158.53, 150.46, 140.74, 125.60, 122.76, 50.27, 33.60, 25.53, 24.82 ppm. The NMR data are in accordance with the literature.²

N-phenyl-N', N"-dicyclohexylguanidine (3q)

Yield: 83%. ¹H NMR (300 MHz, 25 °C, CDCl₃): $\delta_{\rm H}$ 7.23 - 7.21 (m, 2H), 6.93 - 6.88 (m, 1H), 6.86 - 6.84 (m, 2H), 3.62 (br, 2H), 3.41 (br, 2H), 2.00 (d, J = 12.0 Hz, 4H), 1.70 - 1.57 (m, 6H), 1.40 - 1.28 (m, 4H), 1.20 - 1.03 (m, 6H) ppm. ¹³C{¹H} NMR (75 MHz, 25 °C, CDCl₃): $\delta_{\rm c}$ 150.55, 150.10, 129.32, 123.73, 121.39, 50.24, 33.91, 25.80, 25.03 ppm. The NMR data are in accordance with the literature.⁵

N-(4-methoxyphenyl)-N', N"-dicyclohexylguanidine (3r)

Yield: 87%. ¹H NMR (300 MHz, 25 °C, CDCl₃): $\delta_{\rm H}$ 6.81 - 6.74 (m, 4H), 3.75 (s, 3H), 3.38 (bs, 2H), 1.98 (d, J = 12.0 Hz, 4H), 1.68 - 1.56 (m, 6H), 1.39 - 1.27 (m, 4H), 1.19 - 1.00 (m, 6H) ppm.

¹³C{¹H} NMR (75 MHz, 25 °C, CDCl₃): δ_c 154.59, 150.60, 143.54, 124.39, 114.67, 55.52, 50.19, 33.92, 25.79, 25.01 ppm. The NMR data are in accordance with the literature.⁵

N-(4-isopropylphenyl)-N', N"-dicyclohexylguanidine (3s)

Yield: 84%. ¹H NMR (300 MHz, 25 °C, CDCl₃): $\delta_{\rm H}$ 6.96 (d, J = 6.0 Hz, 2H), 6.57 (d, J = 9.0 Hz, 2H), 3.17 (bs, 2H), 2.81 - 2.69 (m, 1H), 1.89 (d, J = 9.0 Hz, 4H), 1.71 (d, J = 3.0 Hz, 4H), 1.54 (d, J = 9.0 Hz, 2H), 1.36 - 1.27 (m, 10H), 1.17 (d, J = 6.0 Hz, 6H) ppm. ¹³C{¹H} NMR (75 MHz, 25 °C, CDCl₃): $\delta_{\rm c}$ 144.10, 139.44, 138.46, 126.76, 114.86, 55.43, 34.71, 33.01, 25.25, 24.44, 24.01 ppm. The NMR data are in accordance with the literature.²

N-(2,4,6-trimethylphenyl)-*N'*, *N*"-dicyclohexylguanidine (3t)

Yield: 76%. ¹H NMR (300 MHz, 25 °C, CDCl₃): $\delta_{\rm H}$ 6.77 (s, 2H), 3.20 (br, 2H), 2.21 (s, 3H), 2.16 (s, 6H), 1.94 - 1.91 (m, 4H), 1.76 (br, 4H), 1.59 - 1.56 (m, 2H), 1.39 - 1.24 (m, 10H) ppm. ¹³C{¹H} NMR (75 MHz, 25 °C, CDCl₃): $\delta_{\rm c}$ 140.10, 139.91, 128.88, 127.20, 121.89, 55.82, 35.00, 25.53, 24.77, 20.42, 17.61 ppm. The NMR data are in accordance with the literature.³

N,N'-diisopropylpyrrolidine-1-carboximidamide (3u)

Yield: 84%. ¹H NMR (300 MHz, 25 °C, CDCl₃): $\delta_{\rm H}$ 3.34 - 3.30 (m, 2H), 3.19 (br, 4H), 1.72 (br, 4H), 1.04 (d, J = 6.0 Hz, 12H) ppm. ¹³C{¹H} NMR (75 MHz, 25 °C, CDCl₃): $\delta_{\rm c}$ 153.26, 47.62, 46.35, 24.93, 24.48 ppm. The NMR data are in accordance with the literature.²

N,*N*'-dicyclohexylpyrrolidine-1-carboximidamide (3v)

Yield: 81%. ¹H NMR (300 MHz, 25 °C, CDCl₃): $\delta_{\rm H}$ 3.22 (br, 4H), 2.93 (br, 2H), 1.76 - 1.70 (m, 12H), 1.59 - 1.55 (m, 2H), 1.31-1.02 (m, 10H) ppm. ¹³C{¹H} NMR (75 MHz, 25 °C, CDCl₃): $\delta_{\rm c}$ 153.55, 55.21, 47.99, 35.29, 25.83, 25.62, 25.25 ppm. The NMR data are in accordance with the literature.²

¹H NMR and ¹³C{¹H} NMR spectra of guanidine product:

Figure FS16. ¹H NMR (300 MHz, 25 °C, CDCl₃) spectrum of **3a**.

Figure FS17. ${}^{13}C{}^{1}H$ NMR (75 MHz, 25 °C, CDCl₃) spectrum of **3a**.

Figure FS18. ¹H NMR (300 MHz, 25 °C, CDCl₃) spectrum of **3b**.

Figure FS19. ${}^{13}C{}^{1}H$ NMR (75 MHz, 25 °C, CDCl₃) spectrum of **3b**.

Figure FS20. ¹H NMR (300 MHz, 25 °C, CDCl₃) spectrum of 3c.

Figure FS15. $^{13}C\{^{1}H\}$ NMR (75 MHz, 25 °C, CDCl₃) spectrum of 3c.

Figure FS16. ¹H NMR (300 MHz, 25 °C, CDCl₃) spectrum of 3d.

Figure FS17. ¹³C{¹H} NMR (75 MHz, 25 °C, CDCl₃) spectrum of **3d**.

Figure FS18. ¹H NMR (300 MHz, 25 °C, CDCl₃) spectrum of 3e.

Figure FS19. ${}^{13}C{}^{1}H$ NMR (75 MHz, 25 °C, CDCl₃) spectrum of **3e**.

Figure FS20. ¹H NMR (300 MHz, 25 °C, CDCl₃) spectrum of 3f.

Figure FS21. ${}^{13}C{}^{1}H$ NMR (75 MHz, 25 °C, CDCl₃) spectrum of 3f.

Figure FS22. ¹H NMR (300 MHz, 25 °C, CDCl₃) spectrum of 3g.

Figure FS23. $^{13}C\{^{1}H\}$ NMR (75 MHz, 25 °C, CDCl₃) spectrum of 3g

Figure FS24. ¹H NMR (300 MHz, 25 °C, CDCl₃) spectrum of **3h**.

Figure FS25. ¹³C{¹H} NMR (75 MHz, 25 °C, CDCl₃) spectrum of **3h.**

Figure FS26. ¹H NMR (300 MHz, 25 °C, CDCl₃) spectrum of 3i.

Figure FS27. $^{13}C\{^{1}H\}$ NMR (75 MHz, 25 °C, CDCl₃) spectrum of 3i.

Figure FS28. ¹H NMR (300 MHz, 25 °C, CDCl₃) spectrum of 3j.

Figure FS29. $^{13}C\{^{1}H\}$ NMR (75 MHz, 25 °C, CDCl₃) spectrum of 3j.

Figure FS30. ¹H NMR (300 MHz, 25 °C, CDCl₃) spectrum of 3k.

Figure FS31. ${}^{13}C{}^{1}H$ NMR (75 MHz, 25 °C, CDCl₃) spectrum of 3k.

Figure FS32. ¹H NMR (300 MHz, 25 °C, CDCl₃) spectrum of 3l.

Figure FS33. $^{13}C\{^{1}H\}$ NMR (75 MHz, 25 °C, CDCl₃) spectrum of 31.

Figure FS34. ¹H NMR (300 MHz, 25 °C, CDCl₃) spectrum of **3m**.

Figure FS35. ${}^{13}C{}^{1H}$ NMR (75 MHz, 25 °C, CDCl₃) spectrum of **3m.**

Figure FS36. ¹H NMR (300 MHz, 25 °C, CDCl₃) spectrum of **3n**.

Figure FS37. ¹³C{¹H} NMR (75 MHz, 25 °C, CDCl₃) spectrum of **3n**.

Figure FS38. ¹H NMR (300 MHz, 25 °C, CDCl₃) spectrum of 30.

Figure FS39. ${}^{13}C{}^{1}H$ NMR (75 MHz, 25 °C, CDCl₃) spectrum of **30.**

Figure FS40. ¹H NMR (300 MHz, 25 °C, CDCl₃) spectrum of **3p**.

Figure FS41. ¹³C{¹H} NMR (75 MHz, 25 °C, CDCl₃) spectrum of **3p.**

Figure FS42. ¹H NMR (300 MHz, 25 °C, CDCl₃) spectrum of 3q.

Figure FS43. ¹³C{¹H} NMR (75 MHz, 25 °C, CDCl₃) spectrum of 3q.

Figure FS44. ¹H NMR (300 MHz, 25 °C, CDCl₃) spectrum of **3r**.

Figure FS45. ¹³C{¹H} NMR (75 MHz, 25 °C, CDCl₃) spectrum of 3r.

Figure FS46. ¹H NMR (300 MHz, 25 °C, CDCl₃) spectrum of 3s.

Figure FS47. ¹³C{¹H} NMR (75 MHz, 25 °C, CDCl₃) spectrum of **3s.**

Figure FS48. ¹H NMR (300 MHz, 25 °C, CDCl₃) spectrum of 3t.

Figure FS49. ¹³C{¹H} NMR (75 MHz, 25 °C, CDCl₃) spectrum of **3t.**

Figure FS50. ¹H NMR (300 MHz, 25 °C, CDCl₃) spectrum of **3u**.

Figure FS51. ¹³C{¹H} NMR (75 MHz, 25 °C, CDCl₃) spectrum of **3u**.

2.93 2.93 2.81 2.81 2.81 7.291 7.291

Figure FS52. ¹H NMR (300 MHz, 25 °C, CDCl₃) spectrum of 3v.

Figure FS53. ¹³C{¹H} NMR (75 MHz, 25 °C, CDCl₃) spectrum of **3v.**

Figure FS54. ¹H NMR (300 MHz, 25 °C, C_6D_6) spectrum of stoichiometric reaction between complex 2a and *p*-anisidine (1:2) after 5 h at room temperature.

Figure FS55. ³¹P{¹H} NMR (300 MHz, 25 °C, C_6D_6) spectrum of stoichiometric reaction between complex **2a** and *p*-anisidine (1:2) after 5 h at room temperature.

Figure FS56. ¹H NMR (300 MHz, 25 °C, C_6D_6) spectrum of stoichiometric reaction between complex 2a and piperidine (1:2) after 5 h at 70 °C.

Figure FS57. ³¹P{¹H} NMR (300 MHz, 25 °C, C_6D_6) spectrum of stoichiometric reaction between complex 2a and piperidine (1:2) after 5 h at 70 °C.

References:

- 1. L. Xu, Z. Wang, W.-X. Zhang and Z. Xi, Inorg. Chem. 2012, 51, 11941.
- 2. P. K. Vardhanapu, V. Bheemireddy, M. Bhunia, G. Vijaykumar and S. K. Mandal, *Organometallics* 2018, **37**, 2602.
- 3. Y. Gao, V. Carta, M. Pink and Jeremy M. Smith, J. Am. Chem. Soc. 2021, 143, 5324.
- 4. T.-G. Ong, G. P. A. Yap and D. S. Richeson, J. Am. Chem. Soc. 2003, 125, 8100.
- 5. Q. Li, S. Wang, S. Zhou, G. Yang, X. Zhu and Y. Liu, J. Org. Chem. 2007, 72, 6763.
- 6. J. Koller and R. G. Bergman, Organometallics 2010, 29, 5946.