Supplementary Information

Room temperature tunable multicolor phosphorescent polymers

for humidity detection and information encryption

Yulei Gao,^a Xiang Di,^a Fenfen Wang^{a,*} and Pingchuan Sun^{a,*}

^aKey Laboratory of Functional Polymer Materials of Ministry of Education and College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China E-mail: wff@mail.nankai.edu.cn; spclbh@nankai.edu.cn

Scheme S1. Synthetic route of H1.

Compound 1,3-bis(4-methoxyphenyl)propane-1,3-dione (L1) was synthesized according to the method which has been reported in the earlier literature with same structure.¹

Synthesis of 1,3-bis(4-hydroxyphenyl)propane-1,3-dione (L2): To a solution of L1 (3.46 g, 12.2 mmol) in CH₂Cl₂ (50 mL) cooled with an ice-salt bath was added dropwise a 1 M CH₂Cl₂ solution of BBr₃ (36.5 mL, 36.5 mmol). This solution was stirred for 30 min at ice-salt bath, 30 min at 0 °C, 5 h at room-temperature and afterward quenched by dropwise addition of H₂O (50 mL). Addition of 2 M NaOH (50 mL). The aqueous was adjusted to pH = 6 with conc HCl (aq) caused formation of a yellow precipitate which was then extracted with ethyl acetate 3 times, and the combined organic phase was washed with brine (20 mL), dried (MgSO₄), filtrated and concentrated under vacuum to afford L2 as a yellow solid (2.77 g, 88.8% yield). ¹H NMR (400 MHz, in

Acetone-d₆): δ 17.58 (s, 0.9H), 9.12 (s, 2H), 8.04 (d, 4H), 7.04 (s, 1H), 6.97 (d, 4H), 4.60 (s, 0.1H).

Synthesis of difluoroboron-1,3-bis(4-hydroxyphenyl)propane-1,3-dione (H1): To a solution of L2 (2.56 g, 10.0 mmol) in CH₂Cl₂ (50 mL) added dropwise BF₃·Et₂O (2.5 mL, 20.0 mmol) by a syringe. The mixture was heated slowly to 60 °C for 5.5 h under nitrogen atmosphere. After cooled to room temperature, the mixture was concentrated under reduced pressure. The desire pure product was obtained by recrystallization from ethyl acetate as a yellow solid (2.18 g, 71.7% yield). ¹H NMR (400 MHz, in Acetone-d₆): δ 9.69 (s, 1.5H), 8.25 (d, 4H), 7.51 (s, 1H), 7.06 (d, 4H).

Figure S1. The ¹H NMR spectrum of L1 in CDCl₃.

Figure S2. The ¹H NMR spectrum of L2 in Acetone- d_6 .

Figure S3. The ¹H NMR spectrum of H1 in Acetone- d_6 .

Figure S4. The ¹H NMR spectrum of BF₂bad in CDCl₃.

Figure S5. The 13 C NMR spectrum of BF₂bad in CDCl₃.

Table 51. Wononier proportions and yields of 51711.					
Sample	BF_2 bad	AM	AIBN	DMSO	SPAP
	[mg]	[mg]	[mg]	[mL]	[mg]
SPAP(1/10)	250	463	6.4	4.5	300
SPAP(1/25)	100	463	6.4	4.5	350
SPAP(1/50)	50	463	6.4	4.5	450
SPAP(1/75)	33	463	6.4	4.5	410
SPAP(1/100)	25	463	6.4	4.5	470

Table S1. Monomer proportions and yields of SPAP.

Figure S6. Molar extinction coefficient of BF₂bad in CH₂Cl₂.

Figure S7. Excitation spectra of SPAP(1/50) ($\lambda_{em} = 518 \text{ nm}$).

Figure S8. RTP emission spectra of SPAP(1/50) and SPAP'(1/50).

Figure S9. The estimated porosity of SPAP using ImageJ. The part as red color marked is the pore.

1. J. L. Howard, Y. Sagatov, L. Repusseau, C. Schotten and D. L. Browne, *Green Chem.*, 2017, **19**, 2798-2802.