Enhanced healing process of tooth sockets using strontium-doped TiO₂

Jialing Li, ^{a, b} Min Huang, ^b Yonglin Xie, ^b Zilu Fan,^b Guanzhen Ju, ^b Jianping Ruan^{*a}

^a Coll Stomatol, Dept Prevent Dent, Xi'an Jiao Tong University, Xi'an, Shaanxi

Province, China

^b Nanchong Central Hospital, the Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China

Experimental section

Materials

Potassium chloride (KCl, 98%), Strontium nitrate $(Sr(NO_3)_2, 95\%)$, titanium (IV) isopropoxide (TTIP, AG), hexadecylamine (AG), Dimethylformamide (DMF, AG), and ethanol (AG) were obtained from Sigma-Aldrich (St. Louis, MO, USA). 4,4-methylene diphenyl diisocyanate (MDI, 98%), poly(tetramethyleneoxide) (PTMO, Mn = 1000), anhydrous toluene (99.8%), and 1,4-butylene glycol (AG)were purchased from Acros Organics Co.

Fabrication of Sr-TiO₂ mesoporous nanospheres

The Sr-TiO₂ mesoporous nanospheres were synthesized by a sol-gel strategy and a followed solvothermal process. 0.9 g of KCl was dissolved in 2 mL of deionised water, which was then slowly added to 25 mL of 1 wt% hexadecylamine in ethanol. After addition of 0.1 mmol of Sr(NO₃)₂, 2 mL of TTIP was poured into the above solution with continuously stirring for 6 h. The resulted suspension was transferred into the Teflon-lined autoclaves and heated at 180 °C for 12 h. After reaction, the Sr-TiO₂ products were collected, washed, dried, and calcined at 450 °C for 4 h in air. The undoped TiO₂ was prepared using a similar process without the addition of the Sr dopants.

Preparation of NH₂-functionalized Sr-TiO₂ (Sr-TiO₂/MDI) mesoporous nanospheres

3.0 g of MDI was dissolved in 50 mL of anhydrous toluene, which was transferred into a two-necked round-bottomed flask. Subsequently, 1.0 g of Sr-TiO₂ was added to the flask under stirring. The temperature was kept at 60 °C for 6 h under N₂ flow. After reaction, the cooled mixture was filtered and washed with anhydrous toluene to remove excessed MDI and physically adsorbed species. The obtained Sr-TiO₂/MDI product was dried at 120 °C in a vacuum oven.

Synthesis of injectable SPU/Sr-TiO₂/MDI adhesives

Before experiment, the OCN-terminated polymer was firstly prepared by the reaction between MDI (1.5 g) and PTMO (3.0 g) in 15 mL of DMF at 90 °C for 3 h under N_2

flow. As a chain extender, 0.5 mL of 1,4-butylene glycol was then slowly poured into the above mixture under stirring for further 10 minutes. Next, 1.0 g of Sr-TiO₂/MDI was added to the pale yellow viscose solution and stirred for another 2 h to attain the injectable SPU/Sr-TiO₂/MDI adhesives.

Characterization

The morphological information of the Sr-TiO₂ mesoporous nanospheres were studied by transmission electron microscopy (TEM, JEOL JEM 2100 Co., Tokyo, Japan) with an accelerating voltage of 200 keV. The SPU/Sr-TiO₂/MDI adhesives were characterized by scanning electron microscope (SEM, FEI Quanta 200FEG, Oregon, USA) operated at 10 kV. X-ray photoelectron spectroscopy (XPS) technique was performed using Alpha 110 instrument (East Grinstead, UK) with monochromatic Al K α radiation (hv = 1486.7 eV) and a pass energy of 20 eV. Powder X-ray diffraction (XRD) test were carried out on Philips PW 1710 diffractometer with Cu K α ($\lambda =$ 1.5406A) radiation. Raman spectra were acquired on a Raman microscope (LabRAM HR, HORIBA Jobin Yvon Inc.), the used excitation wavelength was 532 nm. UV-vis spectra (UV/vis DRS) were recorded using a Shimadzu spectrophotometer (MPC-2200).

In vitro antibacterial test

The antibacterial activity of SPU/Sr-TiO₂/MDI was estimated with the bacterium strains of E. coli by zone of inhibition method. Firstly, 100 μ L of 108CFU/mL bacteria suspension was spread on a LB agar plate. Next, 100 μ L of freshly obtained compound was injected into sterile blank disc and placed onto the agar surface. The diameter of zone of inhibition was recorded and analyzed after incubation at 37°C for 24 h.

In vitro cell viability

L02 cells were cultivated in Dulbecco's minimum essential medium containing 10% (v/v) fetal bovine serum, 0.01% ascorbic acid, 10 μ g/mL peni-cillin and streptomycin at 37°C in 5% CO₂ and 95% humidity. The culture medium was replaced in every two days. The cells were seeded on a piece of sterile dressing on 96-well plates with 100 μ L of the fresh medium. The culture medium was removed from each well after 24 h, followed by the adding of MTT solution (100 μ L, 5 mg/mL in fetal bovine serum) and

culturing at 37 °C for another 4 h. Afterward, the 200 μ L of dimethyl sulfoxide (DMSO) was introduced to replace the MTT solution. A microplate reader (Tecan i-control multiplate reader, Switzerland) was employed to evaluate the cell viability by measuring the absorbance at 490 nm.

Animal experiments

The in vivo animal experiment was supported by Institute of Radiation Medicine, Chinese Academy of Medical Science (IRM-CAMS) Tianjin, China. The 16 Kunming rats (Male, 10 weeks old with about 200 g body weight) were used for animal studies and randomly divided into two groups (blank SPU and SPU/Sr-TiO₂/MDI). The right mandibular central incisor was removed under general anesthesia with 0.3 ml/kg SU-MIAN-XIN. The tooth sockets were injected with the prepared adhesives for each group. The treated rats were then given ampicillin sodium and fed the soft diet for 3 days. In each group, two rats were randomly selected after 1, 2, 4 and 7 weeks' treatment. The selected rats were continuously perfused with 4% paraformaldehyde through MINI-type infusion pump. The mandibles were separated after complete fixation and treated with 4% paraformaldehyde for 24 h.

Statistical analysis

All the triplicate data in this study have been calculated and analyzed using analysis of variance for presenting a significance level at p < 0.05 and standard deviations (±).

Figures

Figure S1 XRD patterns (a) and Raman spectra (b) for TiO₂, 0.1 Sr-TiO₂, 0.2 Sr-TiO₂, and 0.3 Sr-TiO₂ products.

Figure S2 XPS profiles of TiO_2 and different $Sr-TiO_2$ products. (a) Survey spectrum, (b) Ti 2p, (c) O1 s, and (d) Sr 3d.

Figure S3 (a) XRD profiles of TiO₂, Sr-TiO₂, SPU/Sr-TiO₂/MDI, SPU/Sr-TiO₂, and SPU samples and their UV-vis DR spectra (b).

Figure S4 Staining of living/ dead rBMSCs on the surface of different materials.

Figure S5 Cell density for the live and dead cell by applying different materials.

Material	Common point	Merit	Drawback
SPU/ Sr-TiO ₂ / MDI	Promote wound	Anti infection, suitable	The long-term effect
	healing,	for periodontitis	needs to be observed.
	ability to fill the	extraction of affected	
	defect tissue,	teeth; Injectability,	
	and fine	strong plasticity and	
	biocompatibility	convenient operation.	
		Suitable for post	
		extraction site	
		preservation of irregular	
		extraction socket; Hard	
		to cause secondary	
		injury of bone repair	
		site; Stable degradation	
		performance.	
Collagen sponge		Anti infection, rapid	In the process of
		hemostasis, stable blood	absorption, there will be
		clot, preventing blood	slight inflammatory
		clot from falling off and	reaction and low
		foreign bodies from	mechanical properties.
		falling into the tooth	
		extraction socket,	
		provide a stable	
		environment for blood	
		clot mechanized	
		osteogenesis, suitable	
		for those with multiple	
		bleeding and poor	
	_	coagulation function.	
Calcium sulfate		Reduce exudation,	Excessive absorption
hemihydrate		protect wounds and	rate in vivo;
		prevent bleeding;	Degradation products
		Suitable for patients	are easy to lead to local
		with oral anticoagulants.	exudation reaction of
	-		incision.
BIOSs bone meal		Strong effect on	Immune inflammatory
		promoting osteogenesis	reaction might happens;
		and a large amount of	Inconvenient to operate,
		new bone formation,	requires a special bone
		which is conducive to	powder conveyor for
		the recovery of patients'	filling.
		wounds and	

Table S1. Comparison of SPU/ Sr-TiO $_2\!/$ MDI with different materials in the field.

		I
	surrounding tissues;	
	Suitable for patients	
	with many bone defects.	
Hydroxyapatite	The effect of promoting	Low mechanical
artificial bone powder	osteogenesis is not as	performance, slow
	good as BIOSs bone	degradation speed and
	powder; Suitable for	inconvenient operation,
	patients with small-	Requires a special bone
	scale bone defects	powder conveyor for
		filling
CGF hydroxyapatite	Shorten the time of	High cost and
ceramics	bone healing and	complicated fabrication.
	improve the quality of	
	bone tissue. Suitable for	
	those with poor bone	
	tissue conditions	