Supporting Information for

Application of a Dual Functional Blocking Layer for Improvement of the Responsivity in Self-Powered UV Photodetector Based on TiO₂ Nanotubes.

Alireza Zare, ^a Saeed Behayin, ^b Mahmoud Moradi ^b and Zahra Hosseini *^a

^a Faculty of Advanced Technologies, Shiraz University, Shiraz 7194684560, Iran. Email: <u>zahrahosseini@shirazu.ac.ir</u>

^b Department of Physics, School of Sciences, Shiraz University, Shiraz, Iran.

Fig S1. XRD pattern of aqueous GQDs solution.

Fig. S2. The Photoluminescence spectrum of aqueous GQD solution.

Fig. S3. Cross-sectional FESEM images of TiO₂ NTs synthesized by anodization method. a) 4.21 μ m NTs, b) 7.83 μ m NTs, c) 11.34 μ m NTs, d) 14.52 μ m NTS, e) 17.26 μ m NTs, f) 16.61 μ m NTs.

NTs length (μm)	Anodization time (minutes)	Temperature (c°)	
3-5	38	23-27	
6-8	45	23-27	
10-12	76	23-27	
14-15	107	23-27	
16-17	115	23-27	
18-20	135	23-27	

Table S1. Anodization parameters for the synthesize of TiO2 NTs.

Fig. S4. XRD pattern of Pure TiO₂ NTs and GQDs coated TiO₂ NTs.

Fig. S5. Photocurrent of the PEC UV photodetectors made with pure TiO_2 NTs of different heights under UV illumination (365nm, 2mW/cm²)

Tubes' height (μm)	Photocurrent density (µA/cm²)	Responsivity (µA/W)	
3-5	7.88	3.94	
6-8	12.3	6.15	
10-12	20.7	10.35	
14-15	27.07	13.5	
16-17	21.09	10.54	
18-20	20.3	10.15	

Table S2. Photocurrent density and responsivity of the PEC UV photodetector made with pure TiO_2 NTs under UV illumination (365nm, $2mW/cm^2$)

Fig. S6. GQDs loading time and its effect of the photocurrent density of UV PEC photodetector with 7.5 μ m TiO₂ NTs in photoanode.

Table S3. GQDs loading time and its effect on the photocurrent density and responsivity of PEC UV photodetector with 7.5 μ m TiO₂ NTs in photoanode.

GQDs loading time (days)	Short circuit photocurrent density (μA/cm²)	Responsivity (mW/cm ²)
Pure 7.5 µm TiO2 NTs	11.5	5.75
4	23.2	11.6
6	29.4	14.7
8	34.9	17.45
9	54.5	27.25
11	26.03	13.01

Fig. S7. GQDs loading time and its effect of the photocurrent density of UV PEC photodetector with 15 μ m TiO₂ NTs in photoanode.

Fig. S8. DRS spectra of pure and GQDs coated TiO_2 NTs in photoanode.

Fig. S9. a) photocurrent response of the 15 μ m GQDs sensitized TiO₂ NTs PEC UV photodetector under on/off switching UV LEDs with the power intensity of 5, 6.17 and 7.12 mW cm⁻² at 0 V bias. b,c) enlarged rising and decaying edge of GQDs sensitized 15 μ m TiO₂ NTs PEC UV photodetector photo response.

Fig. S10. EIS Nyquist plot for the PEC UV photodetector with 15 μ m TiO₂ NTs in photoanode before and after sensitization with GQDs.

	7.5 μm TNT		15 μm TNT	
	TNT-PD	GQD-TNT-PD	TNT-PD	GQD-TNT-PD
Charge Recombination resistance Rrc (KΩ)	182.2	526.8	141.7	489.67

Table S4. Quantity of charge recombination resistance at Electrolyte/Photoanode interface.

Nanostructures	Condition	Electrolyte type	T _r (s)	T _d (s)	R _λ (mA/W)	refs
TiO2/Ag/ZnS nanotubes	365 nm, 40 mWcm ⁻² , 0 V	polysulfide	0.16	0.18	12.42	[1]
TiO ₂ nanotube arrays	365 nm, 3 mWcm ⁻² , 0 V	S ²⁻ /Sx ²⁻	0.004	0.004	22	[2]
Titanium Dioxide Nanotube	360 nm, 115 mWcm ⁻² , 1 V	Na_2So_4	0.88	1.28	0.73	[3]
GQDs coated 7.5 µm TiO ₂ NTs	365 nm, 2mWcm ⁻² 0 V	⁻ / ₃ -	0.73	0.88	27.5	This work
GQDs coated 15 μm TiO ₂ NT	365 nm, 2mWcm ⁻² 0 V	⁻ / ₃ -	1.195	1.29	42.5	This work

Table S5. The photo response performance comparison of various self-powered PEC UV photodetectors reported recently.

References

- [1] X. Li, S. Gao, G. Wang, Z. Xu, S. Jiao, D. Wang, Y. Huang, D. Sang, J. Wang, Y. Zhang, A self-powered ultraviolet photodetector based on TiO2/Ag/ZnS nanotubes with high stability and fast response, J. Mater. Chem. C. 8 (2020) 1353–1358. https://doi.org/10.1039/c9tc05326c.
- [2] J. Chen, B. Hu, C. Chen, X. Lv, H. San, W. Hofmann, A HIGH-PERFORMANCE SELF-POWERED UV PHOTODETECTOR BASED ON SELF-DOPING TIO 2 NANOTUBE ARRAYS Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, CHINA and Institute of Solid State Physics, Technical University of Berlin, Ber, 2019 20th Int. Conf. Solid-State Sensors, Actuators Microsystems Eurosensors XXXIII (TRANSDUCERS EUROSENSORS XXXIII). (2019) 1329–1332.
- [3] S. Ng, F.K. Yam, S.N. Sohimee, K.P. Beh, S.S. Tneh, Y.L. Cheong, Z. Hassan, Photoelectrochemical ultraviolet photodetector by anodic titanium dioxide nanotube layers, Sensors Actuators, A Phys. 279 (2018) 263–271. https://doi.org/10.1016/j.sna.2018.06.030.