Electronic Supplementary Material

Fabric phase sorptive extraction combined with gas chromatography-mass spectrometry as an innovative analytical technique for the determination of selected polycyclic aromatic hydrocarbons in herbal infusions and tea samples N. Manousi^{a,b}, A. Kabir^{c,d}, Kenneth G. Furton^c, E. Rosenberg^{b*}, G. A. Zachariadis^a

^a Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece

^b Institute of Chemical Technologies and Analytics, Vienna University of Technology, 1060 Vienna, Austria

^c International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA

^d Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka-1207, Bangladesh

*Corresponding author: email: egon.rosenberg@tuwien.ac.at, Institute of Chemical Technologies and Analytics, Vienna University of Technology, 1060 Vienna, Austria

Figure S2. Representative chromatogram of a spiked herbal infusion sample (c= 10.00 ng mL⁻¹)

Figure S3. Comparison of different sol-gel coated FPSE membrane for the extraction of the selected PAHs.

Figure S4. Study of the effect of sample volume on extraction efficiency.

Figure S5. Study of stirring rate effect on analytes recovery

Figure S6. Study of salt addition effect on extraction efficiency.

Figure S7. Selection of the appropriate eluting solvent

Figure S8. Study of eluent volume effect on extraction efficiency.

Figure S9. Results of the reusability study of the sol-gel C_{18} coated FPSE media

Phase	Substrate	Networking Precursor	Polymer/Precursor/Particle	Building block				
1. Sol-gel mixed mode	Cellulose	Methyl trimethoxysilane	Octadecylsilane (C18) 3-Mercaptopropyl trimethoxysilane	$\begin{vmatrix} -\mathbf{S}\mathbf{i} \\ -\mathbf{S}\mathbf{i} \\ -\mathbf{S}\mathbf{i} \\ \mathbf{S}\mathbf{O}_{3}^{-} \end{vmatrix}$				
2. Sol-gel graphene	Cellulose	Methyl trimethoxysilane	Graphene					
3. Sol-gel polytetrahydrofuran	Cellulose	Methyl trimethoxysilane	Poly(tetrahydrofuran)	HO O H n				
4. Sol-gel CW20M	Cellulose	Methyl trimethoxysilane	Carbowax 20M	но				
5. Sol-gel Graphene	Polyester	Methyl trimethoxysilane	Graphene					
 Sol-gel polyethylene glycol 300 	Cellulose	Methyl trimethoxysilane	Poly(ethylene glycol) 300	но				
7. Sol-gel octadecyl	Cellulose	Methyl trimethoxysilane	Octadecylsilane	-Si				

Table S1: List of FPSE sorbent chemistries used in the current project and their pertinent information

8. Sol-gel poly(dimethyl diphenyl siloxane)	Cellulose	Methyl trimethoxysilane	Poly(dimethyldiphenylsiloxane)	$HO-Si-O(-Si-O) \xrightarrow{CH_3 CH_3 CH_3}_{M(Si-O)-Si-CH_3 CH_3}$
9. Sol-gel poly(diphenylsiloxane)	Cellulose	Methyl trimethoxysilane	Poly(diphenylsiloxane)	
10. Sol-gel poly(diphenylsiloxane)	Polyester	Methyl trimethoxysilane	Poly(diphenylsiloxane)	
11. Sol-gel octyl	Cellulose	Methyl trimethoxysilane	Octyl silane	
12. Sol-gel polycaprolactone- polydimethylsiloxane- polycaprolactone	Cellulose	Methyl trimethoxysilane	Poly(caprolactone)-b- Poly(dimethylsiloxane)-b- Poly(caprolactone)	

				$ \begin{array}{c} CH_{3}\\O-\overset{CH_{3}}{\overset{CH_{3}}}{\overset{CH_{3}}}{\overset{CH_{3}}}{\overset{CH_{3}}}{\overset{CH_{3}}}{\overset{CH}_{3}}}{\overset{CH}_{3}}}{\overset{CH}_{3}}}{\overset{CH}_{3}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$						
13. Sol-gel polycaprolactone- polydimethylsiloxane- polycaprolactone	Polyester	Methyl trimethoxysilane	Poly(caprolactone)-b- Poly(dimethylsiloxane)-b- Poly(caprolactone)	$ \begin{array}{c} $						
14. Sol-gel chitosan		Methyl trimethoxysilane	Chitosan							
15. Sol-gel poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol)	Cellulose	Methyl trimethoxysilane	Poly(ethylene glycol)-b- poly(propylene glycol)-b- poly(ethylene glycol)	$HO \begin{bmatrix} O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $						
16. Sol-gel poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide)	Cellulose	Methyl trimethoxysilane	Poly(propylene oxide)-b- poly(ethylene oxide)-b- poly(propylene oxide)	$HO \begin{bmatrix} O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $						

		CH-1		CH-2		CH-3		GMT		IN-1		IN-2		IN-3		GT	
Analyte	Added (ng mL ⁻¹)	Found (ng mL ⁻¹)	RR%	Found (ng mL ⁻¹)	RR%	Found (ng mL ⁻¹)	RR%	Found (ng mL ⁻¹)	RR%	Found (ng mL ⁻¹)	RR%	Found (ng mL ⁻¹)	RR%	Found (ng mL ⁻¹)	RR%	Found (ng mL ⁻¹)	RR%
Naphthalene	0	<lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	-	<lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	-	<lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	-	<lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	-	<lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td></lod<></td></lod<></td></lod<></td></lod<>	-	<lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td></lod<></td></lod<></td></lod<>	-	<lod< td=""><td>-</td><td><lod< td=""><td>-</td></lod<></td></lod<>	-	<lod< td=""><td>-</td></lod<>	-
	10	9.1 ± 0.5	91.0	9.4±0.4	94.0	9.8 ± 0.9	98.0	9.2 ± 0.3	92.0	10.7±0.4	107.0	9.3±0.1	93.0	9.6±0.5	96.0	10.1±0.1	101.0
Fluorene	0	<lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	-	<lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	-	<lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	-	<lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	-	<lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td></lod<></td></lod<></td></lod<></td></lod<>	-	<lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td></lod<></td></lod<></td></lod<>	-	<lod< td=""><td>-</td><td><lod< td=""><td>-</td></lod<></td></lod<>	-	<lod< td=""><td>-</td></lod<>	-
	10	10.2± 0.1	102.0	9.7±0.1	97.0	9.3± 0.2	93.0	9.8± 0.3	98.0	8.9±0.3	89.0	10.5±0.3	105.0	9.3±0.3	93.0	9.3±0.3	93.0
Phenanthrene	0	<lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td>0.30±0.01</td><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	-	<lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td>0.30±0.01</td><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	-	<lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td>0.30±0.01</td><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	-	<lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td>0.30±0.01</td><td>-</td></lod<></td></lod<></td></lod<></td></lod<>	-	<lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td>0.30±0.01</td><td>-</td></lod<></td></lod<></td></lod<>	-	<lod< td=""><td>-</td><td><lod< td=""><td>-</td><td>0.30±0.01</td><td>-</td></lod<></td></lod<>	-	<lod< td=""><td>-</td><td>0.30±0.01</td><td>-</td></lod<>	-	0.30±0.01	-
	10	10.3 ± 0.7	103.0	10.6±0.6	106.0	10.8 ± 0.4	108.0	10.3± 0.1	103.0	10.9±0.1	109.0	10.9±0.2	109.0	95.1±0.3	95.0	10.1±0.2	98.0
Pyrene	0	0.52±0.04	-	0.31±0.02	-	<lod< td=""><td>-</td><td>0.42±0.01</td><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	-	0.42±0.01	-	<lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td></lod<></td></lod<></td></lod<></td></lod<>	-	<lod< td=""><td>-</td><td><lod< td=""><td>-</td><td><lod< td=""><td>-</td></lod<></td></lod<></td></lod<>	-	<lod< td=""><td>-</td><td><lod< td=""><td>-</td></lod<></td></lod<>	-	<lod< td=""><td>-</td></lod<>	-
	10	10.4± 0.4	98.8	10.1±0.1	97.9	10.0± 0.4	100.0	10.1 ± 0.3	96.8	10.0±0.3	100.0	10.8±0.1	108.0	9.9±0.5	99.0	10.0±0.1	100.0

Table S2. Analysis of real samples