Supplementary information

Preparation of carboxylic-trifluoromethylated phosphines by hydrolysis of the trifluoromethyl group

Daniel Herrera, Daniel Peral, J. Carles Bayón*

Department of Chemistry, Universitat Autònoma de Barcelona, Bellaterra, Spain
Page
Figure S1. S2
Figure S2. S3
Figure S3. S4
Figure S4. S5
Figure $\mathbf{S 5}$. S5
Table S1. S6
General procedure for the synthesis of trans-[$\left.\mathrm{PdCl}_{2} \mathrm{~L}_{2}\right]$ of MC 1 and MC 2 ligands: S6
Crystallographic data S7
NMR spectra of phosphine compounds and derivatives S9

Experiment 1
$[\mathbf{S P 1}]=0.15 \mathrm{M}$
$\left[\mathrm{H}_{3} \mathrm{BO}_{3}\right]=0.8 \mathrm{M}$
$\left[\mathrm{SO}_{3}\right]=10.5 \mathrm{M}$

Experiment 2

$[\mathbf{S P 1}]=0.15 \mathrm{M}$
$\left[\mathrm{H}_{3} \mathrm{BO}_{3}\right]=0.8 \mathrm{M}$
$\left[\mathrm{SO}_{3}\right]=12 \mathrm{M}$

Experiment 3
$[\mathbf{S P 1}]=0.15 \mathrm{M}$
$\left[\mathrm{H}_{3} \mathrm{BO}_{3}\right]=2.0 \mathrm{M}$
$\left[\mathrm{SO}_{3}\right]=12 \mathrm{M}$

Experiment 4
$[\mathbf{S P 1}]=0.15 \mathrm{M}$
$\left[\mathrm{H}_{3} \mathrm{BO}_{3}\right]=2.4 \mathrm{M}$
$\left[\mathrm{SO}_{3}\right]=10.5 \mathrm{M}$

Experiment 5
$[\mathbf{S P 1}]=0.10 \mathrm{M}$
$\left[\mathrm{H}_{3} \mathrm{BO}_{3}\right]=1.5 \mathrm{M}$
$\left[\mathrm{SO}_{3}\right]=7 \mathrm{M}$

Figure S1. Optimization of reaction conditions for the hydrolysis of phosphine SP1. Products extracted with $\mathrm{Et}_{2} \mathrm{O}$ from the aqueous phase after quenching in water. \% of compounds correspond to the integration of the phosphorus products in ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$. $[\mathrm{SP} 1]=0.15 \mathrm{M},\left[\mathrm{H}_{3} \mathrm{BO}_{3}\right]=0.8 \mathrm{M},\left[\mathrm{SO}_{3}\right]=10.5 \mathrm{M}$ was used in the experiments

Figure S2. Optimization of reaction conditions for the hydrolysis of phosphine SP2. Products extracted with $\mathrm{Et}_{2} \mathrm{O}$ from the aqueous phase after quenching in water. \% of compounds correspond to the integration of the phosphorus products in ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR. 0.6 mmol of starting phosphine SP2 were used in the experiments

SP2

SP4

SP5

Figure S3. Evolution of the reaction of hydrolysis in phosphines SP2, SP4 and SP5 with time. Products extracted with $\mathrm{Et}_{2} \mathrm{O}$ form the aqueous phase after quenching in water. \% of compounds correspond to the integration of the phosphorus products in ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR. Reaction conditions:
0.6 mmol of phosphine. [Phosphine $]=0.1 \mathrm{M},\left[\mathrm{H}_{3} \mathrm{BO}_{3}\right]=0.5 \mathrm{M},\left[\mathrm{SO}_{3}\right]=6.7 \mathrm{M}$.

Figure S4. ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (128.38 MHz) of a solution of boric acid in sulfuric acid before (top) and after (bottom) the addition of oleum. δ in ppm. Signals relative to $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.0 \mathrm{ppm})$ used as external standard)

Figure S5. Delocalisation of the phosphonium positive charge.

Table S1. Values of ${ }^{1} \mathrm{~J}_{\mathrm{PSe}}$ for the selenide derivatives of the carboxylic and trifluoromethylated triarylphosphines and selected values from the literature

Phosphine	CF3 groups	$\mathrm{CO}_{2} \mathrm{H}$ groups	$\mathrm{CO}_{2} \mathrm{H}$ subst. pattern	${ }^{1}$ JPSe exp. ${ }^{\text {a }}$	${ }^{1}$ JPSe calc. ${ }^{\text {b }}$
PPh_{3}	0	0	-	731	-
p-DPPBA ${ }^{\text {c }}$	0	1	para	$740^{\text {d }}$	740
DC1	1	2	para	761	761
DC2	1	2	meta	761	761
MC1	2	1	para	764	764
MC2	2	1	meta	764	764
DC4	2	2	meta	773	773
SP1	3	0	-	$766^{\text {d }}$	767
SP2	3	0	-	$767^{\text {d }}$	767
MC4	3	1	meta	776	776
SP4	4	0	-	$780^{\text {d }}$	779
MC5	4	1	meta	786	788
SP5	5	0	-	$791{ }^{\text {d }}$	791
SP3	6	0	-	$800^{\text {d }}$	803

${ }^{\text {a }}$ Values obtained from the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ in CDCl_{3}. See text for more details ${ }^{\mathbf{b}}$ Values estimated from equation 2. ${ }^{\text {c }} p$-(diphenylphosphino)benzoic acid. ${ }^{\text {d }}$ Values from the literature ${ }^{\mathrm{i}}$

General procedure for the synthesis of trans-[$\left.\mathrm{PdCl}_{2} \mathrm{~L}_{2}\right]$ of MC 1 and MC 2 ligands:

In an example reaction, 0.38 mmol of the corresponding carboxylic phosphine were dissolved in a mixture of 3 ml of acetonitrile and 1 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. A solution of 0.19 mmol of palladium (II) chloride in 1 ml of acetonitrile was added to the solution of the phosphine and the mixture was stirred at $40^{\circ} \mathrm{C}$ for 1 h. After that time, the palladium complex precipitated as a yellow solid. The solution was cooled down to room temperature and the complex was collected by filtration and washed 3 times with acetonitrile. The MC2 complex showed high solubility in several solvents $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{2} \mathrm{O}\right.$, acetone, $\mathrm{CH}_{3} \mathrm{CN}$ and ethyl acetate) and could not be precipitated from the reaction mixture. Therefore, the solvent was vacuum evaporated and the yellow solid was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ cyclohexane.

Data for trans-[$\left.\mathbf{P d C l}_{2}(\mathbf{M C 1})_{2}\right]$

${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (161.98 MHz , acetone- $d \sigma$), $\delta(\mathrm{ppm}): 25.50(\mathrm{~s}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400.13 MHz , acetone- $d \sigma$), δ (ppm): $8.16\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{C} 3}\left\{\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}\right\},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.0 \mathrm{~Hz}\right) ; 7.99\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{H}_{\mathrm{C} 2}\left\{\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CF}_{3}\right\}-\mathrm{H}_{\mathrm{C} 2}\left\{\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}\right\}\right)$; $7.88\left(\mathrm{~d}, 8 \mathrm{H}, \mathrm{H}_{\mathrm{C} 3}\left\{\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CF}_{3}\right\},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.0 \mathrm{~Hz}\right) .{ }^{19} \mathbf{F}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}(376.50 \mathrm{MHz}$, acetone- $d \sigma), \delta(\mathrm{ppm}):-62.54$ (s). HR-MS (ESI ${ }^{+} m / z$) $[\mathrm{M}+\mathrm{Na}]^{+}$: calculated for $\left[\mathrm{C}_{42} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~F}_{12} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{PdNa}\right]^{+}$1082.9419; found 1082.9386. Elemental analysis: calculated for $\mathrm{C}_{42} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~F}_{12} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Pd}$: C, $47.50 ; \mathrm{H}, 2.47$; found: $\mathrm{C}, 47.04 ; \mathrm{H}, 2.41$.

Data for trans- $\left[\mathbf{P d C l}_{2}(\mathbf{M C 2})_{2}\right]$

${ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(161.98 \mathrm{MHz}\right.$, acetone- $d \sigma$), $\delta(\mathrm{ppm}): 26.37(\mathrm{~s}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400.13 MHz, acetone- $d \sigma$), δ (ppm): $8.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{C} 2}\left\{\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CF}_{3}\right\}\right) ; 8.25\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{C} 4}\left\{\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}\right\},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.8 \mathrm{~Hz}\right) ; 8.15(\mathrm{~m}, 6 \mathrm{H}$, $\mathrm{H}_{\mathrm{C} 2}\left\{\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CF}_{3}\right\}-\mathrm{H}_{\mathrm{C} 6}\left\{\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}\right\}$); 8.02 (pseudo-q, $4 \mathrm{H}, \mathrm{H}_{\mathrm{C} 6}\left\{\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CF}_{3}\right\},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.7,{ }^{3} \mathrm{~J}_{\mathrm{HP}}=6.0 \mathrm{~Hz}$); 7.95 $\left(\mathrm{d}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{C} 4}\left\{\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CF}_{3}\right\},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right) ; 7.79\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{C} 5}\left\{\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CF}_{3}\right\},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right) ; 7.73(\mathrm{t}, 2 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{C} 5}\left\{\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}\right\},{ }^{3} \mathbf{J}_{\mathrm{HH}}=7.8 \mathrm{~Hz}\right) .{ }^{\mathbf{1 9}} \mathbf{F}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}(376.50 \mathrm{MHz}$, acetone- $d 6), \delta(\mathrm{ppm}):-62.26(\mathrm{~s})$. HR-MS $\left(\mathrm{ESI}^{+} \mathrm{m} / \mathrm{z}\right)[\mathrm{M}+\mathrm{Na}]^{+}$: calculated for $\left[\mathrm{C}_{42} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~F}_{12} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{PdNa}\right]^{+}$1082.9419; found 1082.9376. Elemental analysis: calculated for $\mathrm{C}_{42} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~F}_{12} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Pd}$: $\mathrm{C}, 47.50 ; \mathrm{H}, 2.47$; found: $\mathrm{C}, 47.32 ; \mathrm{H}, 2.81$.

Crystallographic data

An empirical absorption correction was applied to the gathered data (SADABS). ${ }^{\text {ii }}$ The structures were solved by direct methods and refined by full-matrix least-squares methods on F^{2} using SHELXL-2013. iii Plot of the structures was obtained with ORTEP software included in the WinGX package. ${ }^{\text {iv }}$

X-ray diffraction data for trans-[$\left.\mathbf{P d C l}_{2}(\mathbf{M C 1})_{2}\right]$ acetone

Crystals of good quality for X-ray diffraction were obtained by slow evaporation of a saturated solution of the complex in a mixture of acetone/n-hexane. The structure was solved by Direct methods. All nonhydrogen atoms were refined with anisotropic displacement thermal parameters. All hydrogen atoms were idealised and were positioned geometrically and refined using the riding model with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\text {eq }}(\mathrm{C})$ for those attached to carbon and with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{O})$ for those of the OH group. The hydrogen atoms of the acetone molecule were also idealised and positioned geometrically but refined using the riding model with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.5 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$. All the CF_{3} groups were disordered over two different orientations. The following bond length and angle restrains (DFIX) were applied: C-F distance $=1.33$ (3); $\mathrm{C}_{\mathrm{ipso}}-\mathrm{F}$ distance $=2.33(4)$. Moreover, $\mathrm{F}-\mathrm{F}$ distances of the disordered F atoms were restrained to be equal within sd of 0.03 (with SADI command) and the Uij were restrained with DELU and SIMU instructions. All disordered atoms were refined anisotropically and the sum of the site occupation factors was restrained to 1.000 . CCDC deposition number 2097178

Crystal data trans-[PdCl $\left.\mathbf{(M C 1})_{2}\right] \cdot$ acetone			
Chemical formula	$\mathrm{C}_{45} \mathrm{H}_{32} \mathrm{~F}_{12} \mathrm{O}_{5} \mathrm{P}_{2} \mathrm{Pd}$	a	$15.3938(7)$
Molecular weight	1119.94	b	$15.6175(8)$
Space group	Monoclinic, $\mathrm{P} 21 / \mathrm{c}$	c	$20.4211(10)$
wavelength	$0.71073(\mathrm{Mo} \mathrm{K} \alpha)$	α	90
Temperature	$293(2) \mathrm{K}$	β	$97.1070(10)$
Volume	$4871.8(4) \AA^{3}$	γ	90
Z	4	$\mathrm{R}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0475
S	1.029	wR 2	0.1288

X-ray diffraction data for trans-[PdCl $\left.\mathbf{2}_{\mathbf{(M C 2}}^{\mathbf{2}} \mathbf{2}\right]$

Crystals of good quality for X-ray diffraction were obtained by slow diffusion of n-hexane into a solution of the complex in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The structure was solved by direct methods. All non-hydrogen atoms were refined with anisotropic displacement thermal parameters. All hydrogen atoms were idealised and were positioned geometrically and refined using the riding model with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$ for those attached to carbon and with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{O})$ for those of the OH group. Two of the CF_{3} groups were disordered over two different orientations with the F atoms defined anisotropically. The following bond length and angle restrains (DFIX) were applied: C-F distance $=1.33(1) ; \mathrm{C}_{\mathrm{ipso}}-\mathrm{F}$ distance $=2.33$ (3). Moreover, F-F distances of the disordered F atoms were restrained to be equal within sd of 0.03 (with SADI command) and the sum of the site occupation factors was restrained to 1.000 . The Uij were restrained with DELU and SIMU instructions. No restraints were imposed in the non-disordered CF_{3} groups. Badly disordered solvent molecules were observed. The SQUEEZE instruction using PLATON ${ }{ }^{\vee}$ was tested with. no significant difference in bond distances and angles. (Parameters after SQUEEZE routine: $\mathrm{R}=0.0703, \mathrm{wR} 2=0.1972, \mathrm{~S}=0.986) . \mathrm{CCDC}$ deposition number 2106238.

Crystal data trans-[PdCl $\left.\mathbf{(M C 2})_{2}\right]$			
Chemical formula	$\mathrm{C}_{42} \mathrm{H}_{26} \mathrm{~F}_{12} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Pd}$	a	$10.1026(5)$
Molecular weight	1061.87	b	$27.1594(13)$
Space group	Orthorhombic, P bca	c	$36.7299(17)$
wavelength	$0.71073(\mathrm{Mo} \mathrm{K} \alpha)$	α	90
Temperature	$293(2) \mathrm{K}$	β	90
Volume	$10078.0(8) \AA^{3}$	γ	90
Z	8	$\mathrm{R}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0832
S	1.028	wR 2	0.2908

NMR spectra of phosphine compounds and derivatives

MC1
${ }^{1} \mathrm{H}\left(400.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}\left(\mathbf{1 0 0 . 6 1} \mathbf{M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathbf{1 0 1 . 2 7} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathbf{3 7 6 . 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$
$--62.27$

| 5 | -5 | -15 | -25 | -35 | -45 | -55
 (ppm) | -65 | -75 | -85 | -95 | -105 | -115 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

HR-MS (ESI m / z) $[\mathrm{M}-\mathrm{H}]^{-}$
calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{12} \mathrm{~F}_{6} \mathrm{O}_{2} \mathrm{P}\right]^{-}$

\#	\mathbf{m} / \mathbf{z}	\mathbf{l}	$\mathbf{l} \%$
1	441.0485	100	100.0
2	442.0518	23	22.9
3	443.0552	3	2.9

found

\#	\mathbf{m} / \mathbf{z}	\mathbf{I}	$\mathbf{I} \%$
1	441.0486	164644	100.0
2	442.0515	37951	23.1
3	443.0544	5198	3.2

DC1

${ }^{1} \mathrm{H}\left(\mathbf{4 0 0 . 1 3} \mathbf{~ M H z}, \mathrm{CD}_{3} \mathrm{OD}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathbf{1 0 0 . 6 1} \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathbf{1 0 1 . 2 7} \mathbf{~ M H z}, \mathrm{CD}_{3} \mathbf{O D}\right)$

${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathbf{2 3 5 . 3 9} \mathbf{~ M H z}, \mathrm{CD}_{3} \mathrm{OD}\right)$ 8
ì
ì
i

HR-MS $\left(\mathrm{ESI}^{-} m / z\right)[\mathrm{M}-\mathrm{H}]^{-}$

found

$\#$	$\mathrm{~m} / \mathrm{z}$	I	$\mathbf{1} \%$
1	417.0509	100	100.0
2	418.0543	23	23.0
3	419.0576	3	3.3

\#	\mathbf{m} / \mathbf{z}	I	$\mathrm{I} \%$
1	417.0503	101686	100.0
2	418.0529	22379	22.0
3	419.0556	3231	3.2

MC2
${ }^{1} \mathbf{H}\left(400.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}\left(\mathbf{1 0 0 . 6 1} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathbf{H}\right\}\left(\mathbf{1 0 1 . 2 7} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}\left(235.39 \mathrm{MHz}, \mathbf{C D C l}_{3}\right)$

HR-MS (ESI m / z) $[\mathrm{M}-\mathrm{H}]^{-}$
calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{12} \mathrm{~F}_{6} \mathrm{O}_{2} \mathrm{P}\right]^{-}$

found

$\#$	$\mathrm{~m} / \mathrm{z}$	I	1%
1	441.0485	100	100.0
2	442.0518	23	22.9
3	443.0552	3	2.9

$\#$	\mathbf{m} / \mathbf{z}	\|	\| \%
1	441.0489	200125	100.0
2	442.0512	46380	23.2
3	443.0547	5585	2.8

DC2

${ }^{1} \mathrm{H}\left(\mathbf{4 0 0 . 1 3} \mathbf{~ M H z}, \mathrm{CD}_{3} \mathrm{OD}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}\left(100.61 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

| 200 | 180 | 160 | 140 | 120 | 100
 (ppm) | 80 | 60 | 40 | 20 | $($ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}(\mathbf{1 6 1 . 9 8} \mathbf{~ M H z ~ C D} \mathbf{3} \mathbf{O D})$

```
50}40454
    (ppm)
```

${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathbf{3 7 6 . 5 0} \mathbf{~ M H z}, \mathrm{CD}_{3} \mathrm{OD}\right)$

[^0]HR-MS (ESI- m / z) ${ }^{[\mathrm{M}-\mathrm{H}]^{-}}$
calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{P}\right]^{-}$

found

$\#$	$\mathrm{~m} / \mathbf{z}$	\mathbf{I}	$\mathbf{I} \%$
1	417.0512	248910	100.0
2	418.0537	57557	23.1
3	419.0555	7600	3.1

TC2

${ }^{1} \mathrm{H}\left(400.13 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathbf{1 0 0 . 6 1} \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

(ppm)

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}(\mathbf{1 0 1 . 2 7} \mathbf{~ M H z ~ C D} \mathbf{3} \mathbf{O D})$

$$
\angle 0^{\circ} \mathrm{S}^{--}
$$

HR-MS (ESI ${ }^{-} m / z$) ${ }^{[\mathrm{M}-\mathrm{H}]^{-}}$
calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{O}_{6} \mathrm{P}\right]^{-}$

found

S22

MC4
${ }^{1} \mathbf{H}\left(400.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathbf{1 0 0 . 6 1} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

200 \begin{tabular}{lllllllllll}

\& 180 \& 160 \& 140 \& 120 \& | 100 |
| :---: |
| (ppm) | \& 80 \& 60 \& 40 \& 20 \& 0

\end{tabular}

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathbf{1 6 1 . 9 8} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$
$\stackrel{n}{i}$

${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathbf{3 7 6 . 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$

DC4

${ }^{1} \mathrm{H}$ (400.13 MHz, acetone-d6)

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}(\mathbf{1 0 0 . 6 1} \mathrm{MHz}$, acetone-d6)

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}(\mathbf{1 6 1 . 9 8} \mathbf{~ M H z}$, acetone-d6)

[^1]${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}(\mathbf{3 7 6 . 5 0} \mathbf{~ M H z}$, acetone-d6)
∞
n
ì
i

[^2]

MC5

${ }^{1} \mathbf{H}\left(400.13 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathbf{1 0 0 . 6 1} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathbf{1 6 1 . 9 8} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathbf{3 7 6 . 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$
$--63.36$
$\begin{array}{lllllllllllllllllll}5 & -5 & -15 & -25 & -35 & -45 & -55 & -65 & -75 & -85 & -95 & -105 & -115 & -12 \\ (\mathrm{ppm})\end{array}$

HR-MS (ESI $\quad m / z$) $[\mathrm{M}-\mathrm{H}]^{-}$
calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{10} \mathrm{~F}_{12} \mathrm{O}_{2} \mathrm{P}\right]^{-}$

$\#$	\mathbf{m} / \mathbf{z}	\mathbf{I}	$\mathbf{1} \%$
1	577.0232	1000	100.0
2	578.0266	250	25.0
3	579.0296	34	3.4

found

$\#$	$\mathrm{~m} / \mathrm{z}$	I	$\mathbf{1} \%$
1	577.0251	57043	100.0
2	578.0288	13250	23.2
3	579.0335	1891	3.3

Pd-complex MC1

${ }^{1} \mathrm{H}(400.13 \mathrm{MHz}$, acetone-d6)

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}(\mathbf{1 6 1 . 9 8} \mathbf{~ M H z}$, acetone-d6)
$\stackrel{8}{n}$

75	65	55	45	35	25	15	5	-5	-15	-25	-35	-45	-55

${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathbf{H}\right\}(\mathbf{3 7 6 . 5 0} \mathbf{M H z}$, acetone-d6)

HR-MS (ESI $\left.{ }^{+} m / z\right)[\mathrm{M}+\mathrm{Na}]^{+}$

calculated for $\left[\mathrm{C}_{42} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~F}_{12} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{PdNa}\right]^{+}$

found

\#	m / \mathbf{z}	I	$\mathrm{I} \%$
1	1078.9398	269	22.3
2	1080.9275	617	51.1
3	1081.9453	604	50.0
4	1082.9355	1053	87.2
5	1083.9408	683	56.6
6	1084.9376	1207	100.0
7	1085.9352	702	58.2
8	1086.9370	932	77.2
9	1087.9413	403	33.4
10	1088.9353	501	41.5
11	1089.9406	249	20.6
12	1090.9635	324	26.8
13	1091.9967	235	19.4

Pd-complex MC2

${ }^{1} \mathrm{H}$ (400.13 MHz, acetone-d6)

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}(\mathbf{1 6 1 . 9 8} \mathbf{~ M H z}$, acetone-d6)

n
0
1


```
(ppm)
```


${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathbf{H}\right\}(\mathbf{3 7 6 . 5 0} \mathbf{M H z}$, acetone-d6)

HR-MS (ESI ${ }^{+} m / z$) $[\mathrm{M}+\mathrm{Na}]^{+}$
calculated for $\left[\mathrm{C}_{42} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~F}_{12} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{PdNa}\right]^{+}$

\#	m / z	I	$\mathbf{1} \%$
1	1078.9440	18	1.8
2	1079.9474	8	0.8
3	1080.9424	213	21.3
4	1081.9439	496	49.6
5	1082.9428	825	82.5
6	1083.9434	587	58.7
7	1084.9418	1000	100.0
8	1085.9440	452	45.2
9	1086.9416	677	67.7
10	1087.9443	278	27.8
11	1088.9415	248	24.8
12	1089.9436	94	9.4
13	1090.9417	43	4.3
14	1091.9430	13	1.3

found

${ }^{\text {i }}$ D. Herrera, D. Peral, M. Cordón, J.C. Bayón, Eur. J. Inorg. Chem., 2021, 354-363
${ }^{\text {ii }}$ Bruker, SADABS, Bruker Analytical X-Ray Division, Madison 2001
${ }^{\text {iii }}$ G. M Sheldrick,. Acta Cryst.. Sect. A Found. Crystallogr. 2008, 64, 112-122.
${ }^{\text {iv }}$ L. J. Farrugia,. J. Appl. Crystallogr. 1999, 32, 837-838.
${ }^{\text {v }}$ a) A. L. Spek, Acta Crystallogr. 2009, D65, 148-155; b) A. L. Spek, Acta Crystallogr. C Struct. Chem. 2005, 71, 9-18

[^0]: $\begin{array}{llllllllllllllllllll}10 & -15 & -20 & -25 & -30 & -35 & -40 & -45 & -50 & -55 & -60 & -65 & -70 & -75 & -80 & -85 & -90 & -95\end{array}$ (ppm)

[^1]: (ppm)

[^2]: $\begin{array}{lllllllllllllllll}0 & -10 & -20 & -30 & -40 & -50 & \begin{array}{ccccccc}-60 & -70 & -80 & -90 & -100 & -110 & -120 \\ (\mathrm{ppm})\end{array} & & & & \end{array}$

