Electronic Supplementary Information

Highly active postspinel-structured catalysts for oxygen evolution reaction

Yuichi Okazaki,^a Seiji Oda,^a Akihiko Takamatsu,^b Shogo Kawaguchi,^c Hirofumi Tsukasaki,^a

Shigeo Mori,^a Shunsuke Yagi,^d Hidekazu Ikeno,^{ae*} Ikuya Yamada^{a*}

^a. Department of Materials Science, Graduate School of Engineering, Osaka Prefecture

University, Sakai 599-8570, Japan. *E-mail: yamada@mtr.osakafu-u.ac.jp (I.Y.),

ikeno@mtr.osakafu-u.ac.jp (H.I.)

^b. Department of Molecular Engineering, Graduate School of Engineering, Kyoto University,

Kyoto 615-8510, Japan

^{c.} Japan Synchrotron Radiation Research Institute (JASRI), 679-5198.

^d Institute of Industrial Science, The University of Tokyo, Meguro-ku 153-8505.

^{e.}Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan

Atom	Site	x	у	Ζ	U _{iso} × 1000 (Å ²)	BVS
Ca	4 <i>c</i>	0.75957(9)	¹ / ₄	0.65902(7)	4.26(17)	2.41
Cr1	4 <i>c</i>	0.43999(6)	¹ / ₄	0.61270(5)	1.73(10)	2.78
Cr2	4 <i>c</i>	0.41686(6)	¹ / ₄	0.10092(5)	1.73(10)	2.77
01	4 <i>c</i>	0.2048(3)	$^{1}/_{4}$	0.1581(2)	4.2(3)	-1.82
02	4 <i>c</i>	0.1168(2)	¹ / ₄	0.4742(2)	4.2(3)	-2.11
03	4 <i>c</i>	0.5249(3)	¹ / ₄	0.7839(2)	4.2(3)	-1.94
O4	4 <i>c</i>	0.4172(2)	¹ / ₄	0.4271(2)	4.2(3)	-2.11

Table S1 Structure parameters and BVSs for CaCr₂O₄ obtained from the Rietveld refinement.

Space group: *Pnma* (No. 62); a = 9.08312(6) Å, b = 2.96848(2) Å, c = 10.62420(7) Å; $R_{wp} = 6.514\%$, $R_B = 3.056\%$, S = 1.2871. The occupancy factors for all atoms were fixed to the unity. The BVSs were calculated using the following parameters: $b_0 = 0.37$ for all atoms, $r_0 = 1.967$ for Ca²⁺ and $r_0 = 1.724$ for Cr³⁺.

Table S2 Structure parameters and BVSs for CaMn₂O₄ obtained from the Rietveld refinement.

Atom	Site	x	У	Ζ	$U_{\rm iso} \times 1000 ({\rm \AA}^2)$	BVS
Ca	4 <i>d</i>	0.6816(4)	0.35085(10)	¹ / ₄	5.5(3)	2.25
Mn	8e	0.20386(17)	0.11167(5)	0.06853(5)	3.95(15)	2.97
01	4 <i>c</i>	0.5934(9)	1/4	0	6.3(4)	-2.10
O2	4 <i>d</i>	0.1935(10)	0.1835(3)	¹ / ₄	6.3(4)	-2.21
03	8e	0.2022(7)	0.4751(2)	0.1062(2)	6.3(4)	-2.11

Space group: *Pbcm* (No. 57); a = 3.15881(2) Å, b = 9.99484(8) Å, c = 9.67905(8) Å; $R_{wp} = 8.723\%$, $R_{B} = 4.211\%$, S = 2.1367. The occupancy factors for all atoms were fixed to the unity. The BVSs were calculated using the following parameters: $b_0 = 0.37$ for all atoms, $r_0 = 1.967$ for Ca²⁺ and $r_0 = 1.760$ for Mn³⁺.

Atom	Site	x	у	Ζ	U _{iso} × 1000 (Å ²)	BVS
Ca	4 <i>c</i>	0.24365(9)	¹ / ₄	0.34597(7)	4.76(16)	2.23
Fe1	4 <i>c</i>	0.06640(6)	$^{1}/_{4}$	0.11190(5)	3.15(9)	2.79
Fe2	4 <i>c</i>	0.08135(6)	1/4	0.60528(5)	3.15(9)	2.84
01	4 <i>c</i>	0.2927(2)	1/4	0.6628(2)	3.4(3)	-1.81
02	4 <i>c</i>	0.3821(2)	1/4	0.9768(2)	3.4(3)	-2.02
03	4 <i>c</i>	0.4762(3)	1/4	0.2173(2)	3.4(3)	-1.96
04	4 <i>c</i>	0.0803(2)	1/4	0.92715(19)	3.4(3)	-2.06

Table S3 Structure parameters and BVSs for CaFe₂O₄ obtained from the Rietveld refinement.

Space group: *Pnma* (No. 62); a = 9.22725(7) Å, b = 3.02020(2) Å, c = 10.69728(8) Å; $R_{wp} = 5.178\%$, $R_B = 2.276\%$, S = 1.7666. The occupancy factors for all atoms were fixed to the unity. The BVSs were calculated using the following parameters: $b_0 = 0.37$ for all atoms, $r_0 = 1.967$ for Ca²⁺ and $r_0 = 1.759$ for Fe³⁺.

Table S4 Structure parameters and BVS for ZnCr₂O₄ obtained from the Rietveld refinement.

Atom	Site	x	У	Ζ	U _{iso} ×1000 (Å ²)	BVS
Zn	8 <i>a</i>	1/8	1/8	1/8	4.10(5)	1.91
Cr	16 <i>d</i>	1/2	¹ / ₂	1/2	2.22(5)	2.95
0	32 <i>e</i>	0.26205(5)	0.26205(5)	0.26205(5)	2.49(15)	-1.95

Space group: $Fd^{3}m$ (No. 227); a = 8.32708(2) Å; $R_{wp} = 4.422\%$, $R_{B} = 1.820\%$, S = 1.8272; The occupancy factors for all atoms were fixed to the unity. The BVSs were calculated using the following parameters: $b_0 = 0.37$ for all atoms, $r_0 = 1.704$ for Zn^{2+} and $r_0 = 1.724$ for Cr^{3+} .

Atom	Site	x	У	Ζ	U _{iso} ×1000 (Å ²)	BVS
Zn	4 <i>b</i>	0	1/4	3/8	5.30(13)	1.85
Mn	8 <i>c</i>	0	0	0	3.69(12)	3.11
0	16 <i>h</i>	0	0.4743(3)	0.25627(17)	4.7(3)	-1.97
Snace or	011n· 14.	lamd (N	$J_0 (141) \cdot a = 5.7174$	$5(2)$ Å $\cdot c = 9.24605$	$(4) \ \text{\AA} \cdot R = 9 \ 47\% \ R$	$P_{\rm p} = 4.14\%$

Table S5 Structure parameters and BVSs for ZnMn₂O₄ obtained from the Rietveld refinement.

Space group: $I4_1/amd$ (No. 141); a = 5.71745(2) Å; c = 9.24605(4) Å; $R_{wp} = 9.47\%$, $R_B = 4.14\%$, S = 2.57. The occupancy factors for all atoms were fixed to the unity. The BVSs were calculated using the following parameters: $b_0 = 0.37$ for all atoms, $r_0 = 1.704$ for Zn^{2+} and $r_0 = 1.760$ for Mn³⁺.

Table S6 Structure parameters and BVS for ZnFe₂O₄ obtained from the Rietveld refinement.

Atom	Site	x	у	Ζ	U _{iso} ×1000 (Å ²)	BVS
Zn	8 <i>a</i>	¹ / ₈	¹ / ₈	¹ / ₈	6.93(11)	1.85
Fe	16 <i>d</i>	¹ / ₂	1/2	1/2	5.06(9)	2.95
0	32 <i>e</i>	0.26106(12)	0.26106(12)	0.26106(12)	6.2(3)	-1.88
Space g	roup: <i>Fd</i>	⁷³ <i>m</i> (No. 227);	a = 8.44198(4)	Å; $R_{\rm wp} = 0.72$	9%, $R_{\rm B} = 3.632\%$,	S = 1.8178. The
occupancy factors for all atoms were fixed to the unity. The BVSs were calculated using the						

Table S7 Structure parameters and BVS for LaCrO₃ obtained from the Rietveld refinement.

following parameters: $b_0 = 0.37$ for all atoms, $r_0 = 1.704$ for Zn²⁺ and $r_0 = 1.759$ for Fe³⁺.

Atom	Site	x	У	Ζ	U _{iso} ×1000 (Å ²)	BVS
La	4 <i>c</i>	0.01892(5)	1/4	0.00576(8)	2.39(7)	2.549
Cr	4b	0	0	¹ / ₂	1.25(10)	3.127
01	4 <i>c</i>	0.4918(6)	¹ / ₄	0.9501(8)	11.1(6)	-0.553
02	8 <i>d</i>	0.2712 (8)	0.0323(4)	0.7266(7)	11.1(6)	-0.546

Space group: *Pnma* (No.62); a = 5.48026(6) Å, b = 7.76122(8) Å, c = 5.51639(6) Å; $R_{wp} = 5.77$ %, $R_B = 1.58$ %, S = 1.26. The occupancy factors for all atoms were fixed to the unity. The BVSs were calculated using the following parameters: $b_0 = 0.37$ for all atoms, $r_0 = 2.172$ for La³⁺ and $r_0 = 1.724$ for Cr³⁺.

Atom	Site	x	У	Ζ	$U_{\rm iso} \times 1000 ({\rm \AA}^2)$	BVS
La	6 <i>a</i>	0	0	¹ / ₄	10.21(10)	2.580
Mn	6 <i>b</i>	0	0	0	4.89(15)	3.468
0	18e	0.4487(4)	0	¹ / ₄	8.1(6)	-0.553
Space g	roup: R ³	c (No. 167); a	a = 5.52164(9)	Å, <i>c</i> = 13.318	$379(16)$ Å; $R_{\rm wp} = 7$	$.48\%, R_{\rm B} = 2.30$
%, <i>S</i> =	%, $S = 1.8912$. The occupancy factors for all atoms were fixed to the unity. The BVSs were					

Table S8 Structure parameters and BVS for LaMnO₃ obtained from the Rietveld refinement.

1.760 for Mn³⁺.

Table S9 Structure parameters and BVS for LaFeO₃ obtained from the Rietveld refinement.

calculated using the following parameters: $b_0 = 0.37$ for all atoms, $r_0 = 2.172$ for La³⁺ and $r_0 =$

Atom	Site	x	у	Ζ	U _{iso} ×1000 (Å ²)	BVS
La	4 <i>c</i>	0.02966(6)	¹ / ₄	0.9936(9)	2.77(8)	2.72
Fe	4b	0	0	¹ / ₂	1.82(13)	3.07
01	4c	0.4863(8)	¹ / ₄	0.0748(11)	7.0(6)	-0.51
02	32 <i>e</i>	0.26106(12)	0.26106(12)	0.26106(12)	7.0(6)	-0.51

Space group: *Pnma* (No.62); a = 5.56698(4) Å, b = 7.85474(6) Å, c = 5.55458(4) Å; $R_{wp} = 8.61$ %, $R_B = 3.40$ %, S = 2.19. The occupancy factors for all atoms were fixed to the unity. The BVSs were calculated using the following parameters: $b_0 = 0.37$ for all atoms, $r_0 = 2.172$ for La³⁺ and $r_0 = 1.759$ for Fe³⁺.

Table S10 The 2p band center of oxygen (ε_{2p}), unoccupied 3d band center of transition metal (ε_{3d-un}), and charge-transfer energies(Δ) for Zn B_2O_4 and Ca B_2O_4 (B = Cr, Mn, Fe).

Compound	$\varepsilon_{2p}(eV)$	$\varepsilon_{3d-un}(eV)$	$\Delta(eV)$
ZnCr ₂ O ₄	-3.08	4.68	7.76
$ZnMn_2O_4$	-3.69	3.49	7.18
ZnFe ₂ O ₄	-2.95	2.52	5.48
CaCr ₂ O ₄	-2.93	4.44	7.38
CaMn ₂ O ₄	-2.65	4.14	6.79
CaFe ₂ O ₄	-2.58	2.69	5.26

Compound	Magnetic structure*	Nominal electron configuration
ZnCr ₂ O ₄	FM	$t_{2g}^{3}e_{g}^{0}$
$ZnMn_2O_4$	FM	$t_{2g}{}^{3}e_{g}{}^{1}$
ZnFe ₂ O ₄	FM	$t_{2g}{}^{3}e_{g}{}^{2}$
CaCr ₂ O ₄	AFM	$t_{2g}{}^{3}e_{g}{}^{0}$
CaMn ₂ O ₄	AFM	$t_{2g}^{3}e_{g}^{1}$
CaFe ₂ O ₄	AFM	$t_{2g}^{3}e_{g}^{2}$

Table S11 Magnetic structures and nominal electron configurations for ZnB_2O_4 and CaB_2O_4 (*B* = Cr, Mn, and Fe).

*FM: ferromagnetic, AFM: antiferromagnetic.

Table S12 Reaction paths for AEM- O_{BRI} , LOM- O_{BRI} , and AEM.

Reaction	AEM-O _{BRI}	LOM-O _{BRI}	AEM
step n			
1	*/- + $H_2O \rightleftharpoons$	*/- + $H_2O \rightleftharpoons$	$*/* + H_2O \rightleftharpoons$
	$^{*}OH/- + H^{+} + e^{-}$	$OH/- + H^+ + e^-$	$^{*}OH/* + H^{+} + e^{-}$
2	*OH/- ≒	*OH/- ≒	*OH/* ≒
	$O_{}O_{}O_{}O_{}H^{+}+e^{}$	$*/* + O_2(g) + H^+ + e^-$	$O/* + H^+ + e^-$
3	$*O/- + H_2O \rightleftharpoons$	$*/* + H_2O \rightleftharpoons$	$*O/* + H_2O \rightleftharpoons$
	$OOH-O_{BRI} + H^+ + e^-$	$*/*OH + H^+ + e^-$	$OOH/* + H^+ + e^-$
4	*OOH–O _{BRI} ≒	*/*OH ≒	*OOH/* ≒
	/- + $O_2(g)$ + H^+ + e^-	$/- + H^+ + e^-$	$*/* + O_2(g) + H^+ + e^-$

Table S13 Reaction paths for three types of dual-site AEMs

Tuble 510 Reaction pains for three types of data site rillions							
Reaction	dual-site AEM (1)	dual-site AEM (2)	dual-site AEM (3)				
step <i>n</i>							
1	*/* + $H_2O \rightleftharpoons$	$*/* + H_2O \rightleftharpoons$	$*/* + 2H_2O \rightleftharpoons$				
	$*/*OH + H^+ + e^-$	$OH/* + H^+ + e^-$	$OH/*OH + 2H^+ + 2e^-$				
2	*/*OH + $H_2O \rightleftharpoons$	$*OH/* + H_2O \rightleftharpoons$	*OH/*OH ≒				
	$OH/OH + H^+ + e^-$	$OH/*OH + H^+ + e^-$	$OH/- + H^+ + e^-$				
3	*OH/*OH ≒	*OH/*OH ≒	*OH/- ≒				
	$OH/- + H^+ + e^-$	$OH/- + H^+ + e^-$	$*/* + O_2(g) + H^+ + e^-$				
4	*OH/- ≒	*OH/- ≒					
	$*/* + O_2(g) + H^+ + e^-$	$*/* + O_2(g) + H^+ + e^-$					

Table S14 Change of free energy $\Delta G_{*X/*Y}$ for *X/*Y surface states.

Surface state	$\Delta G_{*X/*Y}$
OH/-	$\Delta G_{ \text{OH/-}} = E_{* \text{OH/-}} - E_{*} - \left(2E_{\text{H}_{2}\text{O}} - \frac{3}{2}E_{\text{H}_{2}}\right) + \left[\Delta ZPE - T\Delta S\right]_{* \text{OH/}*}$
*O–O _{BRI}	$\Delta G_{*_{O}-O_{BRI}} = E_{*_{O/-}} - E_{*} - (2E_{H_2O} - 2E_{H_2}) + [\Delta ZPE - T\Delta S]_{*_{O}-O_{BRI}}$
OOH–O _{BRI}	$\Delta G_{ \text{ OOH - O}_{BRI}} = E_{* \text{ OOH/-}} - E_{*} - \left(3E_{H_2O} - \frac{5}{2}E_{H_2}\right) + \left[\Delta ZPE - T\Delta S\right]_{* \text{ OOH -}}$
/	$\Delta G_{*/*} = E_{*OH/*} - E_{*} - \left(E_{H_2O} - \frac{1}{2}E_{H_2}\right) + \left[\Delta ZPE - T\Delta S\right]_{*/*}$
*/*OH	$\Delta G_{*/*OH} = E_{*/*OH} - E_{*} - \left(E_{H_2O} - \frac{1}{2}E_{H_2}\right) + \left[\Delta ZPE - T\Delta S\right]_{*/*OH}$
OH/	$\Delta G_{* \text{ OH}/*} = E_{* \text{ OH}/*} - E_{*} - \left(E_{\text{H}_{2}\text{O}} - \frac{1}{2}E_{\text{H}_{2}}\right) + \left[\Delta Z P E - T \Delta S\right]_{* \text{ OH}/*}$
O/	$\Delta G_{* O/*} = E_{* O/*} - E_{*} - (E_{H_2O} - E_{H_2}) + [\Delta ZPE - T\Delta S]_{* O/*}$
OOH/	$\Delta G_{* \text{ OOH}/*} = E_{* \text{ OOH}/*} - E_{*} - \left(2E_{\text{H}_{2}\text{O}} - \frac{3}{2}E_{\text{H}_{2}}\right) + \left[\Delta ZPE - T\Delta S\right]_{* \text{ OOH}/*}$
*OH/*OH	$\Delta G_{* \text{ OH}/* \text{ OH}} = E_{* \text{ OH}/* \text{ OH}} - E_{*} - (2E_{\text{H}_2\text{O}} - E_{\text{H}_2}) + 2[\Delta ZPE - T\Delta S]_{* \text{ OH}/* \text{ OH}}$

where $[\Delta ZPE - T\Delta S]_{*X/*Y}$ is calculated from change of ZPE and S for each *X/*Y surface state. E_* is the energy with the surface including O_{BRI} lattice oxygen (the */- surface).

Table S15 Relative free energies ΔG_n (units: eV) for AEM-O _{BRI} , LOM-O _{BRI} , and AEM.							
ΔG_n	AEM-O _{BRI}	LOM-O _{BRI}	AEM				
ΔG_1	$\Delta G_{* \text{OH/}-} - e\phi + k_{\text{B}}T \ln a_{\text{H}^+}$	$\Delta G_{* \text{OH/-}} - e\phi + k_{\text{B}}T \ln a$	$e \Delta G_{* \text{OH}/*} - \Delta G_{*/*} - e\phi +$				
ΔG_2	$\Delta G_{* O - O_{BRI}} - \Delta G_{* OH/} - e\phi$	$\Delta G_{*/*} - \Delta G_{* \text{OH/-}} - e\phi$	$\Delta G_{* \text{O/}*} - \Delta G_{* \text{OH/}*} - e\phi$				
ΔG_3	$\Delta G_{* \text{OOH - O}_{BRI}} - \Delta G_{* \text{O - O}_{BRI}}$	$\Delta G_{*/* \text{OH}} - \Delta G_{*/*} - e\phi$	$\Delta G_{* \text{OOH}/*} - \Delta G_{* \text{O}/*} - e\phi$				
	+ $k_{\rm B}T \ln a_{\rm H^+}$						
ΔG_4	$4.92[eV] - \Delta G_{*OOH - O_{BRI}} - e$	$4.92[eV] - \Delta G_{*/*OH} - eq$	$4.92[eV] - (\Delta G_{*OOH/*})$				
	+ $k_{\rm B}T \ln a_{\rm H^+}$	$+ k_{\rm B}T \ln a_{{\rm H}^+}$	$-\Delta G_{*/*}) - e\phi + k_{\rm B}T \ln a_{\rm H}$				

Table S16 Relative free energies ΔG_n (units: eV) for dual-site AEM (1), (2), and (3).

ΔG_n	dual-site AEM (1)	dual-site AEM (2)	dual-site AEM (3)
ΔG_1	$\Delta G_{*/*OH} - \Delta G_{*/*}$	$\Delta G_{* \text{ OH}/*} - \Delta G_{*/*}$	$\Delta G_{* \text{OH}/* \text{OH}} - \Delta G_{*/*}$
	$-e\phi + k_{\rm B}T \ln a_{\rm H^+}$	$-e\phi + k_{\rm B}T \ln a_{{\rm H}^+}$	$-e\phi + k_{\rm B}T \ln a_{\rm H^+}$
ΔG_2	$\Delta G_{* \text{OH}/* \text{OH}} - \Delta G_{*/* \text{OH}}$	$\Delta G_{*\rm OH/*OH} - \Delta G_{*\rm OH/*}$	$\Delta G_{* \text{ OH/}-} - \Delta G_{* \text{ OH/} * \text{ OH}}$
	$-e\phi + k_{\rm B}T \ln a_{\rm H^+}$	$-e\phi + k_{\rm B}T \ln a_{{\rm H}^+}$	$-e\phi + k_{\rm B}T \ln a_{\rm H^+}$
ΔG_3	$\Delta G_{* \text{ OH/ -}} - \Delta G_{* \text{ OH/ * OH}}$	$\Delta G_{* \text{ OH/}-} - \Delta G_{* \text{ OH/}* \text{ OH}}$	$4.92 - (\Delta G_{* \text{OH/}} - \Delta G_{* / *})$
	$-e\phi + k_{\rm B}T \ln a_{\rm H^+}$	$-e\phi + k_{\rm B}T \ln a_{{\rm H}^+}$	$-e\phi + k_{\rm B}T \ln a_{\rm H^+}$
ΔG_4	$4.92 - (\Delta G_{* \text{ OH/}-} - \Delta G_{*/*})$	$2 4.92 - (\Delta G_{* \text{OH/}-} - \Delta G_{*/*})$) -

$$-e\phi + k_{\rm B}T\ln a_{\rm H^+} - e\phi + k_{\rm B}T\ln a_{\rm H^+}$$

Table S17 DFT-calculated $\Delta G_{*X/*Y}$ (unit: eV) for each *X/*Y surface state in (001) CaFe₂O₄ surface.

$\Delta G_{*OH/-}$	Δ	Δ	$\Delta G_{*/*}$	$\Delta G_{*/*OH}$	$\Delta G_{* OH/*}$	$\Delta G_{*O/*}$	$\Delta G_{*OOH/*}$	$\Delta G_{*\rm OH/*OH}$
	$G_{*O-O_{BRI}}$	$G_{* \text{OOH - O}_{BRI}}$						
1.04	1.72	4.28	-3.20	-2.08	-1.09	2.18	1.43	0.26

In these calculations, the ΔG values are defined as the free energy change with respect to the */- surface where the Fe_{CUS} ion is exposed, and the O_{BRI} is bound.

Table S18 DFT-calculated ΔG_n (unit: eV) for each reaction step *n*, and theoretical overpotential (η_{th}) (unit: V).

Reaction step n/	ΔG_n					
η_{th}	(a)	(b)	(c)	(d)	(e)	(f)
1	1.04	1.04	2.11	1.02	2.11	3.46
2	0.68	0.68	3.27	2.34	1.35	0.78
3	2.56	1.02	-0.75	0.78	0.78	0.76
4	0.64	2.08	0.29	0.76	0.76	-
η_{th}	1.33	0.85	2.04	1.11	0.88	1.00

Fig. S1 Rietveld refinement result of SXRD data for (a) $LaCrO_3$, (b) $LaMnO_3$, (c) $LaFeO_3$, (d) $ZnCr_2O_4$, (e) $ZnMn_2O_4$, (f) $ZnFe_2O_4$, (g) $CaCr_2O_4$, (h) $CaMn_2O_4$, and (i) $CaFe_2O_4$. Circles (black) and solid lines (red) represent observed and calculated patterns, respectively. The difference between the observed and calculated patterns is shown at the bottom (blue). The vertical marks (green) indicate the Bragg reflection positions.

Fig. S2 SEM images for perovskite oxides: (a) $LaCrO_3$, (b) $LaMnO_3$, and (c) $LaFeO_3$, spinel oxides: (a) $ZnCr_2O_4$, (b) $ZnMn_2O_4$, and (c) $ZnFe_2O_4$, and postspinel oxides: (d) $CaCr_2O_4$, (e) $CaMn_2O_4$, and (f) $CaFe_2O_4$.

Fig. S3 HRTEM images of postspinel oxides, $CaCr_2O_4$, $CaMn_2O_4$, and $CaFe_2O_4$ in pristine (left), as-cast (middle), after chronoamperometry (right) at 1.6 V vs. RHE for 1h. The bars show 10 nm.

Fig. S4 Total density of states (DOS) and partial DOS (PDOS) for ZnB_2O_4 and CaB_2O_4 (B =

Cr, Mn, Fe) obtained by DFT calculation.

Fig. S5 Overpotential as a function of charge-transfer energy (Δ) for ZnB₂O₄, LaBO₃, and CaB₂O₄. The data for perovskite oxides were taken from the reference.^{1,2} The lines were obtained from linear fitting.

Fig. S6 Schematics for slab models for $CaFe_2O_4$ (001) plane. Top views are illustrated in (a). The Fe_{CUS} and O_{BRI} were enclosed in dashed circles (orange and green), respectively. Fixed layers in surface calculations (blue areas) and calculations for adsorbed models (magenta areas) are displayed in the side view (b) for $CaFe_2O_4$.

References

- I. Yamada, A. Takamatsu, K. Asai, H. Ohzuku, T. Shirakawa, T. Uchimura, S. Kawaguchi, H. Tsukasaki, S. Mori, K. Wada, H. Ikeno and S. Yagi, *ACS Appl. Energy Mater.*, 2018, 1, 3711–3721.
- I. Yamada, A. Takamatsu, K. Asai, T. Shirakawa, H. Ohzuku, A. Seno, T. Uchimura, H. Fujii, S. Kawaguchi, K. Wada, H. Ikeno and S. Yagi, *J. Phys. Chem. C*, 2018, 122, 27885–27892.