A Solid-Supported Organocatalyst for Asymmetric Mannich

Reaction to Construct C2-quaternary Indolin-3-ones

Jian-Xiong An,^a Fen-Fen Yang,^a Pan Wang,^a Zhi-Cheng Gu,^a Yan Li,^b Lei Chen,^a Yong-Long Zhao,^a and Bin He^{*a}

- ^a State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, People's Republic of China.
- ^b School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, People's Republic of China.

Supporting Information

Contents:

1. General information	1
2. Synthesis of 2-chlorotrityl chloride resin-supported catalyst 6a, 6b, 8a and 8b	2
3. General Procedure for the Synthesis of 11a, 11a' and 12a	5
4. Analytical Data of 11a (11a')-11o and 12a-12d	6
5. X-ray Crystallographic data of 12d	.15
6. References	.16
7. NMR spectra	.17
8. ¹ H NMR spectra of crude products to determine diastereomeric ratio	.40
9. HPLC spectra	49

1. General methods:

Unless otherwise stated, all commercial reagents were used as received. All experiments were monitored by analytical thin-layer chromatography (TLC). TLC was performed on silica gel plates with F-254 indicator and compounds were visualized by irradiation with UV light and/or by treatment with a solution of phosphomolybdic acid in ethanol followed by heating. Flash chromatography was carried out utilizing silica gel (200-300 mesh). ¹H NMR, ¹³C NMR spectra were recorded on 400 MHz or 100 MHz spectrometers, The spectra were recorded in CDCl₃ or DMSO-d₆ as solvents at room temperature, ¹H NMR, ¹³C NMR spectra were recorded on a JNM-ECS400 (400 M) spectrometer (400 MHz ¹H, 100 MHz ¹³C). ¹H and ¹³C NMR chemical shifts are reported in ppm relative to either the residual solvent peak or TMS as an internal standard: CDCl₃ (¹H NMR: δ 7.26, singlet; ¹³C NMR: δ 77.0, triplet), DMSO- d_6 (¹H NMR: δ 2.50, singlet, ¹³C NMR: δ 39.5, multiplet). Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, dd = doublet), integration, coupling constant (Hz) and assignment. Data for ¹³C NMR are reported as chemical shift. High resolution mass spectrometry (HRMS) was performed on a Thermofisher (Vanquish (UPLC)-Q-Exactive Plus) mass instrument (ESI) and methanol was used to dissolve the sample. Enantiomeric excess values were determined by HPLC using a Chiralcel IC-H and Chiralcel OD-H column on Essential LC-16 series and eluting with i-PrOH and n-hexane. Optical rotation was measured on the Rudolph Autopol 1 polarimeter with $[\alpha]_D$ values reported in degrees; concentration (c) is in g/100 mL. Elemental analyses (C, H, O, N) were performed by vario Micro cube, Elementar, Germany. 2-Aryl-3H-indol-3-ones 9 could be conveniently prepared according to the literature procedure.^{1,2,3}

2. Synthesis of 2-chlorotrityl chloride resin-supported catalyst 6a, 6b, 8a and 8b

Synthesis of methyl (2S,4R)-4-hydroxypyrrolidine-2-carboxylate (2a)

Compound 1a (10g, 40.77 mmol) was dissolved in solution of DCM (50 mL) and then added the TFA (30 mL), After this addition, the mixture was stirred for about 4 h at room temperature. The solvent and TFA were removed under reduced pressure to give compound 2a as a colorless oil in 95 % yield (5.62 g, 38.72 mmol).

Synthesis of 1-((9*H*-fluoren-9-yl)methyl) 2-methyl(2*S*,4*R*)-4-hydroxypyrrolidine-1,2-dicarboxylate (3a)

Compound **2a** (5.62 g, 38.72 mmol) was dissolved in solution of 10% Na₂CO₃ (30 mL) and then added the mixture of N-(9-Fluorenylmethoxycarbonyloxy)succinimide (19.59 g, 58.08 mmol) and THF (60 mL). After this addition, the mixture was stirred for about 4 h at room temperature. The solvent was removed under reduced pressure.

The mixture was extracted with DCM(2×100 mL) and then washed with brine. The

combined organic extracts were dried over anhydrous Na_2SO_4 and concentrated in vacuo after filtration to give crude product. The crude product was purified by column chromatography (PE:EA = 3:1) to give compound **3a** as a colorless oil in 79% yield (11.23 g, 30.59 mmol).

Synthesis of 4-(((3*R*,5*S*)-1-(((9H-fluoren-9-yl)methoxy)carbonyl)-5-(methoxycarbonyl)pyrrolidin-3-yl)oxy)-4-oxobutanoic acid (4a)

To a stirred solution of compound 3a (11.23 g, 30.59 mmol) and succinic anhydride (6.12 g, 60.18 mmol) in anhydrous DCM (50 mL) was added DMAP (1.87 g, 15.30 mmol) at room temperature. After stirring for 12 h, the mixture was adjusted to PH 3-

4 with citric acid. The reaction mixture was extracted with DCM(2 \times 200 mL) and

then washed with brine. The combined organic extracts were dried over anhydrous Na_2SO_4 and concentrated in vacuo after filtration to give crude product. The crude product was purified by column chromatography (CH₂Cl₂:MeOH = 30:1) to give

compound **4a** as a colorless oil in 85% yield (12.15 g, 26.00 mmol). ¹H NMR (400 MHz, CDCl₃): δ 9.35 (s, 1H), 7.75-7.68 (m, 2H), 7.60 – 7.50 (m, 2H), 7.39 – 7.34 (m, 2H), 7.33 – 7.26 (m, 2H), 5.29 (d, *J* = 13.9 Hz, 1H), 4.60 – 4.30 (m, 3H), 4.19 (dt, *J* = 12.9, 6.7 Hz, 1H), 3.72 (s, 3H), 3.59 (s, 2H), 2.60 (d, *J* = 7.1 Hz, 4H), 2.47 – 2.32 (m, 1H), 2.29 – 2.04 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 176.7, 172.6, 171.8, 154.9, 143.9, 143.8, 141.3, 141.3, 127.8, 127.2, 125.2, 125.0, 124.9, 120.1, 120.1, 73.1, 72.1, 67.9, 57.9, 52.6, 47.0, 36.6, 35.5, 29.0, 28.8; HRMS (ESI): calculated [M-H]⁺ for C₂₅H₂₄NO₆: 466.1435, found [M-H]⁺: 466.1415

Synthesis of resin 5a

Measure out 3 g of 2-chlorotrityl chloride resin (100-200 mesh, 1% DVB, 1.179 mmol/g) and place it in a clean vessel. Add DCM (10 mL) to the vessel and incubate at room temperature with shaking for 3 h. Then wash vessel and resin with DCM (5mL) three times. A solution of compound **4a** (8.3 g, 17.68 mmol) dissolved in anhydrous DCM (20 mL). The resulting DCM solution was poured into the resin in vessel. And then add DIPEA (2.92 mL, 17.68 mmol), after shaking for 15 mins, DIPEA (2.92 mL, 17.68 mmol) was added for shaking overnight. Then MeOH (HPLC) (0.5 mL) was added into the mixture for shaking 15 mins. Finally, the resin was washed with DCM (10 mL) six times and dried to obtain resin **5a** (2.96 g).

Synthesis of the 2-chlorotrityl chloride resin-supported catalysts 6a

Place resin **5a** (1.36 g) in a clean container, add DCM (10 ml) to the vessel and incubate at room temperature with shaking. After shaking for 15 mins, Piperidine (29.36 μ L, 20 mol%) was added to the mixture for shaking 1 h. Then the resin was washed with DCM (5 mL) six times and dried to obtain resin **6a** (1.32 g). The loading rate of supported catalyst **6a** was determined by elemental analysis. Elemental analysis (%) = C, 71.280, H, 4.557, O, 6.252, N, 0.270. *f*(N) = 0.193 mmol/g.

Synthesis of resin 7a

Place resin **5a** (1.6 g) in a clean container, LiOH (226.39 mg, 9.43 mmol) dissolved in anhydrous MeOH (5 mL) was added into the vessel and incubate at room temperature with shaking overnight. The resin was washed with MeOH (5 mL) and 5 ml DCM (5 mL) three times and dried to obtain resin **7a** (1.58 g).

Synthesis of the 2-chlorotrityl chloride resin-supported catalysts 8a

Place resin **7a** (1.58 g) in a clean container, add DCM (10 ml) to the vessel and incubate at room temperature with shaking. After shaking for 15 mins, piperidine (34.11 μ L, 20 mol%) was added to the mixture for shaking 1 h. Then the resin was washed with DCM (5 mL) six times and dried to obtain resin **8a** (1.55 g) The loading rate of supported catalyst **8a** was determined by elemental analysis. Elemental analysis (%) = C, 81.190, H, 4.852, O, 8.588, N, 0.670. *f*(N) = 0.479 mmol/g.

Synthesis of 4-(((3*S*,5*S*)-1-(((9H-fluoren-9-yl)methoxy)carbonyl)-5-(methoxycarbonyl)pyrrolidin-3-yl)oxy)-4-oxobutanoic acid (4b)

Compound **4b** (23.7 g, 88% yield) was prepared from *cis*-N-Boc-4-hydroxy-L-proline methyl ester **1b** (20.0 g, 81.63 mmol) as starting material, by using a similar procedure to that described for the preparation of **4a**. ¹H NMR (400 MHz, CDCl₃): δ 9.60 (s, 1H), 7.89 – 7.68 (m, 2H), 7.67 – 7.49 (m, 2H), 7.42 – 7.35 (m, 2H), 7.34 – 7.26 (m, 2H), 5.28 (d, *J* = 22.5 Hz, 1H), 4.72 – 4.05 (m, 4H), 3.75 (s, 3H), 3.71 – 3.61 (m, 2H), 2.63-2.48 (m, 4H), 2.46 – 2.24 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 177.0, 171.9, 171.6, 154.8, 154.6, 144.0, 143.7, 141.3, 127.8, 127.1, 125.2, 125.1, 124.9, 120.1, 120.1, 73.2, 72.2, 67.9, 58.0, 52.6, 47.2, 36.5, 35.5, 29.0, 28.6; HRMS (ESI): calculated [M-H]⁺ for C₂₅H₂₄NO₆: 466.1435, found [M-H]⁺: 466.1425.

Synthesis of the 2-chlorotrityl chloride resin-supported catalysts 6b

The resin **5b** (5.85 g) and supported catalyst **6b** (1.1 g) were prepared from **4b** and 2chlorotrityl chloride resin (7 g, 1.179 mmol/g) as starting material, by using a similar procedure to that described for the preparation of resin **6a**. The loading rate of supported catalyst **6a** was determined by elemental analysis. Elemental analysis (%) = C, 81.380, H, 4.990, O, 9.388, N, 0.410. f(N) = 0.293 mmol/g.

Synthesis of the 2-chlorotrityl chloride resin-supported catalysts 8b

The supported catalyst **8b** (5.76 g) was prepared from resin **5b** (5.85 g) as starting material, by using a similar procedure to that described for the preparation of resin **8a**. The loading rate of supported catalyst **8b** was determined by elemental analysis. Elemental analysis (%) = C, 80.540, H, 4.825, O, 7.092, N, 0.330. f(N) = 0.236 mmol/g.

3. General Procedure for the Synthesis of 11a, 11a' and 12a The Synthesis of aldehydes 11a and 11a' as an example of General Procedure

To a solution of 2-aryl-3*H*-indol-3-one **9a** (0.10 mmol), **10a** (0.20 mmol) and solidsupported catalyst **8b** (10 mol%) in DMF (1.0 mL) was stirred at 0 °C. The mixture was further stirred for the required period of time (as judged by TLC analysis). Then, the mixture was extracted with EtOAc. The organic extracts were washed with H₂O and brine, dried over anhydrous Na₂SO₄, and then concentrated. The crude product was then poured into the suspension of excess NaBH₄ (0.2 mmol) in methanol (1 mL) at 0 °C. After stirring for 10 min, the solution was treated with saturated aqueous NaHCO₃. The mixture was extracted with EtOAc. The combined organic extracts were dried over anhydrous Na₂SO₄ and concentrated in vacuo after filtration to give crude product. The crude product was purified by flash column chromatography (eluted with petroleum ether/EtOAc = 15/1 to 8/1) to afford the desired product **11a** and **11a'**.

The Synthesis of aldehydes 12a as an example of General Procedure

To a solution of 2-aryl-3*H*-indol-3-one **9a** (0.10 mmol), acetone (0.20 mmol) and solid-supported catalyst **8b** (10 mol%) in DMF (1.0 mL) was stirred at 0 °C. The mixture was further stirred for the required period of time (as judged by TLC analysis). Then, the mixture was extracted with EtOAc. The organic extracts were

washed with H_2O and brine, dried over anhydrous Na_2SO_4 , and then concentrated. The crude product was purified by flash column chromatography (eluted with petroleum ether/EtOAc = 10/1 to 8/1) to afford the desired product **12a**.

4. Analytical Data of 11a (11a')-11o and 12a-12d⁴ (S)-2((S)-1-Hydroxy-3-phenylpropan-2yl)-2-phenyindolin-3-one (11a)

OH Yellow solid; Reaction times: 60 h; dr: 6.3:1; Yield: 79%; m. p.:

57-59 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.67 – 7.61 (m, 2H), 7.60 – 7.54 (m, 1H), 7.51 – 7.42 (m, 1H), 7.41 – 7.34 (m, 2H), 7.33 – 7.28 (m, 1H), 7.28 – 7.20 (m, 2H), 7.20 – 7.15 (m, 1H), 7.15 – 7.07 (m, 2H), 6.97 (dd, J = 8.2, 0.6 Hz, 1H), 6.84 (dd, J = 7.6, 7.2 Hz, 1H), 5.38 (s, 1H), 3.55 (dd, J = 11.8, 2.8 Hz, 1H), 3.45 (dd, J = 11.8, 5.2 Hz, 1H), 2.90 – 2.80 (m, 1H), 2.74 – 2.56 (m, 2H), 2.35 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 202.2, 160.7, 139.8, 138.5, 137.6, 129.2, 129.1, 128.6, 128.0, 126.4, 125.8, 125.4, 120.7, 120.0, 112.7, 75.4, 61.0, 49.9, 31.9; The Enantiomeric excess (ee) was determined by HPLC with an IC-H column (n-hexane/i-PrOH = 90:10, flow rate 1.0 mL/min, λ = 365 nm), t_R = 15.24 min (major), t_R = 22.03 min (minor), 96% ee; [α]25 D = +170.8 (*c* 0.96, CH₂Cl₂); HRMS (ESI): calculated [M+H]⁺ for C₂₃H₂₂NO₂: 344.1645, found [M+H]⁺: 344.1648.

(S)-2-((R)-1-hydroxy-3-phenylpropan-2-yl)-2-phenylindolin-3-one (11a')

11a' OH ¹H NMR (400 MHz, CDCl₃): δ 7.65 – 7.60 (m, 2H), 7.56 – 7.49 (m, 1H), 7.44 (t, J = 7.6 Hz, 1H), 7.36 (t, J = 7.5 Hz, 1H), 7.31 – 7.20 (m, 3H), 7.20 – 7.08 (m, 3H), 6.94 (d, J = 8.2 Hz, 1H), 6.81 (t, J = 7.4 Hz, 1H), 3.55 (dd, J = 11.8, 2.8 Hz, 1H), 3.45 (dd, J = 11.8, 5.4 Hz, 1H), 2.91 – 2.80 (m, 1H), 2.74 – 2.55 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 202.2, 160.7, 139.8, 138.5, 137.6, 129.1, 129.0, 128.5, 127.9, 126.3, 125.8, 125.3, 120.6, 119.7, 112.7, 75.4, 60.9, 49.9, 31.9; HRMS (ESI): calculated [M+H]⁺ for C₂₃H₂₂NO₂: 344.1645, found [M+H]⁺: 344.1647.

(S)-2-((S)-1-Hydroxypropan-2-yl)-2-phenylindolin-3-one (11b)

Yellow solid; Reaction times: 48 h; dr: 9:1; Yield: 82%; m. p.:

196-198 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.96 (s, 1H), 7.53 (d, *J* = 7.2 Hz, 2H), 7.44 (t, *J* = 7.2 Hz, 1H), 7.33 (q, *J* = 7.6 Hz, 3H), 7.25 (q, *J* = 6.4 Hz, 1H), 6.99 (d, *J* = 8.4 Hz, 1H), 6.64 (t, *J* = 7.6 Hz, 1H), 4.47 (t, *J* = 5.2 Hz, 1H), 3.30 – 3.21 (m, 1H), 3.17 – 3.07 (m, 1H), 2.67 – 2.54 (m, 1H), 0.77 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 201.7, 161.6, 139.2, 137.8, 128.9, 127.7, 126.1, 124.6, 119.1, 117.6, 112.0, 74.2, 62.6, 44.3, 12.8; The Enantiomeric excess (ee) was determined by HPLC with an IC-H column (n-hexane/i-PrOH = 90:10, flow rate 1.0 mL/min, λ = 365 nm), t_R = 12.36 min (major), t_R = 16.64 min (minor), 97% ee; [α]25 D = +337.6 (*c* 1.09, MeOH); HRMS (ESI): calculated [M+H]⁺ for C₁₇H₁₈NO₂: 268.1332, found [M+H]⁺: 268.1337.

(S)-2-((S)-1-Hydroxybutan-2-yl)-2-phenylindolin-3-one (11c)

11c OH Yellow solid; Reaction times: 48 h; dr: 11:1; Yield: 80%; m. p.: 141-143 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.58 – 7.55 (m, 1H), 7.55 – 7.53 (m, 1H), 7.53 – 7.51 (m, 1H), 7.50 – 7.44 (m, 1H), 7.38 – 7.30 (m, 2H), 7.29 – 7.24 (m, 1H), 6.99 (d, J = 7.6 Hz, 1H), 6.84 (t, J = 7.6 Hz, 1H), 5.28 (s, 1H), 3.72 – 3.58 (m, 2H), 2.51 – 2.43 (m, 1H), 2.38 (s, 1H), 1.47 – 1.29 (m, 2H), 0.92 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 202.6, 160.6, 138.6, 137.6, 128.9, 127.8, 125.7, 125.4, 120.8, 119.9, 112.6, 75.9, 61.4, 49.3, 18.9, 12.4; The Enantiomeric excess (ee) was determined by HPLC with an IC-H column (n-hexane/i-PrOH = 80:20, flow rate 1.0 mL/min, λ = 365 nm), t_R = 7.18 min (major), t_R = 9.19 min (minor), 97% ee; [α]25 D = +252.6 (c 0.95, CH₂Cl₂); HRMS (ESI): calculated [M+H]⁺ for C₁₈H₂₀NO₂: 282.1488, found [M+H]⁺: 282.1493.

(S)-2((S)-1-Hydroxy-3-methylbutan-2-yl)-2-phenylindolin-3-one (11d)

11d OH Yellow solid; Reaction times: 60 h; dr: 10:1; Yield: 76%; m. p.: 137-140 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.63 – 7.57 (m, 2H), 7.52 (d, J = 7.6 Hz, 1H), 7.49 – 7.41 (m, 1H), 7.36 – 7.29 (m, 2H), 7.28 – 7.21 (m, 1H), 7.00 (d, J = 8.0 Hz, 1H), 6.79 (t, J = 7.6 Hz, 1H), 5.40 (s, 1H), 3.80 – 3.68 (m, 2H), 2.84 – 2.76 (m, 1H), 1.94 – 1.78 (m, 2H), 0.99 (d, J = 7.6 Hz, 3H), 0.85 (d, J = 7.2 Hz, 3H); ¹³C NMR

(100 MHz, CDCl₃): δ 202.4, 160.2, 138.7, 137.2, 128.8, 127.7, 125.7, 125.4, 120.2, 119.5, 112.1, 75.4, 60.4, 52.6, 26.8, 23.1, 18.5; The Enantiomeric excess (ee) was determined by HPLC with an IC-H column (n-hexane/i-PrOH = 80:20, flow rate 1.0 mL/min, λ = 365 nm), t_R = 7.91 min (major), t_R = 12.30 min (minor), 92% ee; [α]25 D = +372.4 (*c* 0.87, CH₂Cl₂); HRMS (ESI): calculated [M+H]⁺ for C₁₉H₂₂NO₂: 296.1645, found [M+H]⁺: 296.1648.

(R)-2-(1-Hydroxy-2-methylpropan-2-yl)-2-phenylindolin-3-one (11e)

11e OH Yellow solid; Reaction times: 72 h; Yield: 48%; m. p.: 155-156 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.86 – 7.81 (m, 2H), 7.55 (dd, J = 8.0, 0.4 Hz, 1H), 7.40 (td, J = 7.6, 1.2 Hz, 1H), 7.36 – 7.30 (m, 1H), 7.29 – 7.27 (m, 1H), 6.88 (d, J = 8.4 Hz, 1H), 6.72 (td, J = 7.2, 0.8 Hz, 1H), 6.70 (s, 1H), 3.42 (dd, J = 11.2, 5.6 Hz, 1H), 3.26 (d, J = 11.2 Hz, 1H), 2.71 (s, 1H), 1.06 (s, 3H), 1.00 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 203.1, 160.6, 137.5, 136.5, 128.1, 127.7, 127.7, 124.7, 121.3, 118.3, 111.9, 75.6, 70.3, 42.2, 20.6, 19.3; The Enantiomeric excess (ee) was determined by HPLC with an IC-H column (n-hexane/i-PrOH = 90:10, flow rate 1.0 mL/min, $\lambda = 254$ nm), t_R = 7.62 min (major), t_R = 13.58 min (minor), 77% ee; [α]25 D = +124.6 (*c* 0.61, CH₂Cl₂); HRMS (ESI): calculated [M+H]⁺ for C₁₈H₂₀NO₂: 282.1488, found [M+H]⁺: 282.1489.

(S)-2-(4-Fluorophenyl)-2-((S)-2-hydroxy-1-phenylethyl)indolin-3-one (11f)

11f OH Yellow solid; Reaction times: 48 h; dr: 6.1:1; Yield: 83%; m. p.: 52-54 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.68 – 7.62 (m, 2H), 7.58 (d, J = 7.6 Hz, 1H), 7.49 (td, J = 8.4, 1.2 Hz, 1H), 7.29 – 7.23 (m, 2H), 7.22 – 7.16 (m, 1H), 7.13 – 7.03 (m, 4H), 6.98 (d, J = 8.4 Hz, 1H), 6.86 (t, J = 7.2 Hz, 1H), 5.33 (s, 1H), 3.58 – 3.39 (m, 2H), 2.85 – 2.74 (m, 1H), 2.70 (dd, J = 13.2, 3.2 Hz, 1H), 2.59 (dd, J = 13.2, 11.2 Hz, 1H), 2.05 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 202.2, 162.3 (d, J = 246.0 Hz), 160.6, 139.6, 137.7, 134.3 (d, J = 3.0 Hz), 129.1, 128.6, 127.8 (d, J = 8.0 Hz), 126.5, 125.4, 120.6, 120.0, 116.0 (d, J = 21.0 Hz), 112.8, 74.7, 60.9, 50.0, 31.9; ¹⁹F NMR (CDCl₃, 376 MHz): δ = -114.54 ppm; The Enantiomeric excess (ee) was determined by HPLC with an IC-H column (n-hexane/i-PrOH = 90:10, flow rate 1.0 mL/min, $\lambda = 365$ nm), t_R = 10.64 min (minor), t_R = 11.40 min (major), 72% ee; [α]25

D = +104.1 (*c* 1.46, CH₂Cl₂); HRMS (ESI): calculated $[M+H]^+$ for C₂₃H₂₁FNO₂: 362.1550, found $[M+H]^+$: 362.1539.

(S)-2-(4-Chlorophenyl)-2-((S)-1-hydroxy-3-phenylpropan-2-yl)indolin-3-one (11g)

11g On Yellow solid; Reaction times: 48 h; dr: 5:1; Yield: 81%; m. p.: 68-70 °C; ¹H NMR (400 MHz, CDCl₃): δ ¹H NMR (400 MHz,) δ 7.62 (d, J = 8.5 Hz, 2H), 7.55 (dd, J = 8.4, 0.8 Hz, 1H), 7.50 – 7.43 (m, 1H), 7.33 (d, J = 8.4 Hz, 2H), 7.29 – 7.16 (m, 3H), 7.09 (d, J = 7.6 Hz, 2H), 6.95 (d, J = 8.0 Hz, 1H), 6.83 (t, J = 7.2 Hz, 1H), 5.63 (s, 1H), 3.59 – 3.38 (m, 2H), 2.87 – 2.78 (m, 1H), 2.72 – 2.50 (m, 2H), 2.33 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 202.2, 160.8, 139.5, 137.9, 137.2, 134.0, 129.1, 129.1, 128.7, 127.5, 126.5, 125.4, 120.3, 119.9, 112.8, 74.8, 60.9, 49.9, 32.0; The Enantiomeric excess (ee) was determined by HPLC with an IC-H column (nhexane/i-PrOH = 90:10, flow rate 1.0 mL/min, $\lambda = 365$ nm), t_R = 9.65 min (minor), t_R = 11.25 min (major), 84% ee; [α]25 D = +46.0 (*c* 1.74, CH₂Cl₂); HRMS (ESI): calculated [M+H]⁺ for C₂₃H₂₁CINO₂: 378.1255, found [M+H]⁺: 378.1246.

(S)-2-(4-Bromophenyl)-2-((S)-1-hydroxy-3-phenylpropan-2-yl)indolin-3-one (11h)

11h OH Yellow solid; Reaction times: 48 h; dr: 7.3:1; Yield: 78%; m. p.: 114-116 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, J = 8.4 Hz, 3H), 7.52 – 7.44 (m, 3H), 7.28 – 7.24 (m, 2H), 7.23 – 7.17 (m, 1H), 7.10 (d, J = 7.2 Hz, 2H), 6.97 (dd, J =8.0, 0.4 Hz, 1H), 6.85 (t, J = 7.6 Hz, 1H), 5.49 (s, 1H), 3.54 (dd, J = 11.6, 7.2 Hz, 1H), 3.44 (dd, J = 11.6, 5.6 Hz, 1H), 2.86 – 2.77 (m, 1H), 2.73 – 2.53 (m, 2H), 2.20 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 202.0, 160.7, 139.5, 137.8, 137.8, 132.1, 129.1, 128.7, 127.8, 126.5, 125.4, 122.2, 120.4, 120.0, 112.8, 74.8, 60.9, 49.8, 32.0; The Enantiomeric excess (ee) was determined by HPLC with an IC-H column (n-hexane/i-PrOH = 90:10, flow rate 1.0 mL/min, $\lambda = 365$ nm), t_R = 9.73 min (minor), t_R = 11.68 min (major), 86% ee; $[\alpha]$ 25 D = +99.3 (*c* 1.41, CH₂Cl₂); HRMS (ESI): calculated [M+H]⁺ for C₂₃H₂₁BrNO₂: 422.0750, found [M+H]⁺: 422.0734.

(S)-2-((S)-2-Hydroxy-1-phenylethyl)-2-(p-tolyl)indolin-3-one (11i)

11i OH Yellow solid; Reaction times: 48 h; dr: 4.2:1; Yield: 76%; m. p.: 52-54 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, J = 7.6 Hz, 1H), 7.54 – 7.45 (m, 3H), 7.31-7.27 (m, 1H), 7.25 – 7.23 (m, 1H), 7.22 – 7.12 (m, 5H), 6.97 (d, J = 8.2 Hz, 1H), 6.85 (t, J = 7.6 Hz, 1H), 5.40 (s, 1H), 3.55 (dd, J = 12.0, 5.6 Hz, 1H), 3.45 (dd, J = 12.0, 5.2 Hz, 1H), 2.87 – 2.77 (m, 1H), 2.75 – 2.56 (m, 2H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 202.4, 160.6, 140.0, 137.8, 137.6, 135.4, 129.8, 129.2, 128.5, 126.3, 125.6, 125.4, 120.8, 119.9, 112.7, 75.4, 60.9, 49.7, 31.9, 21.1; The Enantiomeric excess (ee) was determined by HPLC with an IC-H column (n-hexane/i-PrOH = 90:10, flow rate 1.0 mL/min, $\lambda = 365$ nm), t_R = 16.87 min (minor), t_R = 18.90 min (major), 51% ee; [α]25 D = +120.0 (*c* 0.70, CH₂Cl₂); HRMS (ESI): calculated [M+H]⁺ for C₂₄H₂₄NO₂: 358.1801, found [M+H]⁺: 358.1803.

(S)-2-((S)-1-hydroxy-3-phenylpropan-2-yl)-2-(4-methoxyphenyl)indolin-3-one (11j)

Yellow solid; Reaction times: 48 h; dr: 5:1; Yield: 73%; m. p.:

73-75 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.60 – 7.51 (m, 3H), 7.50 – 7.43 (m, 1H), 7.29 – 7.11 (m, 5H), 7.00 – 6.80 (m, 4H), 5.48 (s, 1H), 3.77 (s, 3H), 3.57 – 3.35 (m, 2H), 2.85 – 2.75 (m, 1H), 2.75 – 2.50 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 202.7, 160.7, 159.3, 140.0, 137.7, 130.3, 129.2, 128.6, 127.0, 126.3, 125.4, 120.6, 119.8, 114.4, 112.8, 75.1, 60.9, 55.4, 49.8, 31.9; The Enantiomeric excess (ee) was determined by HPLC with an IC-H column (n-hexane/i-PrOH = 80:20, flow rate 1.0 mL/min, λ = 365 nm), t_R = 9.21 min (minor), t_R = 11.01 min (major), 90% ee; [α]25 D

= +97.4 (*c* 0.78, CH₂Cl₂); HRMS (ESI): calculated $[M+H]^+$ for C₂₄H₂₄NO₃: 374.1750, found $[M+H]^+$: 374.1745.

(S)-2-((S)-1-Hydroxy-3-phenylpropan-2-yl)-2-(m-tolyl)indolin-3-one (11k)

Yellow solid; Reaction times: 60 h; dr: 3.4:1; Yield: 67%; m.

p.: 54-56 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.59 (d, J = 7.2 Hz, 1H), 7.52 – 7.46 (m, 1H), 7.44 – 7.38 (m, 2H), 7.31 – 7.27 (m, 3H), 7.23 – 7.09 (m, 4H), 6.98 (d, J = 8.0 Hz, 1H), 6.86 (t, J = 7.2 Hz, 1H), 5.33 (s, 1H), 3.55 (dd, J = 12.0, 2.4 Hz, 1H), 3.50 – 3.40 (m, 1H), 2.86 – 2.76 (m, 1H), 2.73 – 2.59 (m, 2H), 2.48 (s, 1H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 202.3, 160.7, 140.0, 138.8, 138.4, 137.7, 129.2, 129.0, 128.8, 128.5, 126.4, 126.3, 125.4, 122.8, 120.8, 120.0, 112.9, 75.6, 60.9 49.9, 31.9, 21.8; The Enantiomeric excess (ee) was determined by HPLC with an IC-H column (n-hexane/i-PrOH = 90:10, flow rate 1.0 mL/min, $\lambda = 365$ nm), t_R = 14.98 min (major), t_R = 20.20 min (minor), 80% ee; [α]25 D = +180.5 (*c* 0.82, CH₂Cl₂); HRMS (ESI): calculated [M+H]⁺ for C₂₄H₂₄NO₂: 358.1801, found [M+H]⁺: 358.1807.

(S)-2-(3,5-Dimethylphenyl)-2-((S)-1-hydroxy-3-phenylpropan-2-yl)indolin-3-one (11l)

Yellow solid; Reaction times: 60 h; dr: 3:1; Yield: 61%; m. p.: 67-69 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.60 (d, J = 8.0 Hz, 1H), 7.48 (td, J = 7.2, 1.2 Hz, 1H), 7.30 – 7.23 (m, 2H), 7.21 – 7.13 (m, 5H), 6.98 (d, J = 8.0 Hz, 1H), 6.93 (s, 1H), 6.86 (t, J = 7.6 Hz, 1H), 5.30 (s, 1H), 3.54 (dd, J = 12.0, 2.4 Hz, 1H), 3.44 (dd, J = 12.0, 4.8 Hz, 1H), 2.83 – 2.74 (m, 1H), 2.70 – 2.61 (m, 2H), 2.31 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 202.4, 160.7, 140.1, 138.7, 138.3, 137.7, 129.8, 129.2, 128.5, 126.3, 125.4, 123.4, 121.0, 120.0, 112.8, 75.7, 61.0, 50.0, 31.8, 21.7; The Enantiomeric excess (ee) was determined by HPLC with an IC-H column (n-hexane/iPrOH = 90:10, flow rate 1.0 mL/min, λ = 365 nm), t_R = 11.74 min (minor), t_R = 13.98 min (major), 79% ee; [α]25 D = +130.1 (*c* 1.23, CH₂Cl₂); HRMS (ESI): calculated [M+H]⁺ for C₂₅H₂₆NO₂: 372.1958, found [M+H]⁺: 372.1953.

(S)-5-chloro-2-((S)-1-hydroxy-3-phenylpropan-2-yl)-2-phenylindolin-3-one (11m)

11m OH Yellow solid; Reaction times: 72 h; dr: 2:1; Yield: 38%; m. p.: 58-60 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.68 – 7.55 (m, 3H), 7.52 – 7.46 (m, 1H), 7.36 – 7.23 (m, 4H), 7.22 – 7.16 (m, 1H), 7.11 (d, J = 5.6 Hz, 2H), 6.98 (d, J = 8.0 Hz, 1H), 6.86 (t, J = 7.6 Hz, 1H), 5.41 (s, 1H), 3.58 – 3.40 (m, 2H), 2.87 – 2.77 (m, 1H), 2.72 – 2.53 (m, 2H), 2.08 – 2.02 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 201.2, 158.9, 139.6, 138.1, 137.4, 129.1, 129.1, 128.6, 128.2, 126.5, 125.8, 125.0, 124.6, 121.7, 113.9, 76.0, 61.1, 50.0, 32.1; The Enantiomeric excess (ee) was determined by HPLC with an IC-H column (n-hexane/i-PrOH = 90:10, flow rate 1.0 mL/min, λ = 365 nm), t_R = 10.62 min (major), t_R = 11.46 min (minor), 89% ee; [α]25 D = +135.1 (*c* 0.77, CH₂Cl₂); HRMS (ESI): calculated [M+H]⁺ for C₂₃H₂₁ClNO₂: 378.1255, found [M+H]⁺: 378.1253.

(S)-2-((S)-1-hydroxy-3-phenylpropan-2-yl)-5-methyl-2-phenylindolin-3-one (11n)

Yellow solid; Reaction times: 60 h; dr: 2.3:1; Yield: 56%; m. p.: 53-54 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.63 (dd, J = 8.0, 0.8 Hz, 2H), 7.38 (t, J = 8.0 Hz, 3H), 7.33 – 7.22 (m, 4H), 7.22 – 7.12 (m, 3H), 6.91 (d, J = 8.4 Hz, 1H), 5.38 (s, 1H), 3.56 (dd, J = 11.6, 2.4 Hz, 1H), 3.45 (dd, J = 12.0, 4.8 Hz, 1H), 2.89 – 2.60 (m, 2H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 202.4, 159.2, 140.0, 139.2, 138.6, 129.6, 1292, 129.1, 128.6, 128.0, 126.3, 125.8, 124.7, 120.8, 112.8, 76.0, 60.9, 49.8, 31.9, 20.7; The Enantiomeric excess (ee) was determined by HPLC with an IC-H column (n-hexane/i-PrOH = 80:20, flow rate 1.0 mL/min, $\lambda = 365$ nm), t_R = 7.93 min (major), t_R = 13.01 min (minor), 82% ee; [α]25 D = +163.9 (*c* 0.61, CH₂Cl₂); HRMS (ESI): calculated [M+H]⁺ for C₂₄H₂₄NO₂: 358.1801, found [M+H]⁺: 358.1809.

(S)-2-((S)-1-Hydroxy-3-phenylpropan-2-yl)-methyl-2-phenylindolin-3-one (110).

Yellow solid; Reaction times: 60 h; dr: 5:1; Yield: 63%; m.p.:

129-132 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.66 – 7.61 (m, 2H), 7.44 (d, J = 8.0 Hz, 1H), 7.42 – 7.36 (m, 2H), 7.34 – 7.24 (m, 4H), 7.23 – 7.12 (m, 3H), 6.80 (t, J = 7.6 Hz, 1H), 5.07 (s, 1H), 3.55 (dd, J = 11.6, 2.8 Hz, 1H), 3.46 (dd, J = 12.0, 5.2 Hz, 1H), 2.93 – 2.82 (m, 1H), 2.78 – 2.64 (m, 2H), 2.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 202.7, 159.9, 139.9, 138.5, 137.6, 129.3, 129.1, 128.6, 128.0, 126.4, 125.8, 122.7, 121.9, 120.2, 120.1, 75.6, 60.8, 49.7, 31.8, 15.9; The Enantiomeric excess (ee) was determined by HPLC with an IC-H column (n-hexane/i-PrOH = 80:20, flow rate 1.0 mL/min, $\lambda = 365$ nm), t_R = 9.34 min (major), t_R = 12.58 min (minor), 84% ee; [α]25 D = +77.8 (*c* 0.72, CH₂Cl₂); HRMS (ESI): calculated [M+H]⁺ for C₂₄H₂₄NO₂: 358.1801,

found [M+H]⁺: 358.1806.

(S)-2-(2-Oxopropyl)-2-phenylindolin-3-one (12a)

Yellow solid; Reaction times: 72 h; Yield: 46%; m. p.: 104-106 °C;

¹H NMR (400 MHz, CDCl₃): δ 7.57 – 7.52 (m, 3H), 7.48 (qd, J = 7.2, 0.8 Hz, 1H), 7.34 – 7.28 (m, 2H), 7.28 – 7.22 (m, 1H), 6.95 (d, J = 8.0 Hz, 1H), 6.80 (dq, J = 12.0, 0.8 Hz, 1H), 6.14 (s, 1H), 3.74 (d, J = 17.2 Hz, 1H), 2.72 (d, J = 13.2 Hz, 1H), 2.10 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 207.0, 200.4, 160.2, 137.9, 137.8, 128.8, 127.8, 125.7, 125.5, 119.1, 118.3, 112.0, 69.1, 49.5, 31.6; The Enantiomeric excess (ee) was determined by HPLC with an IC-H column (n-hexane/i-PrOH = 90:10, flow rate 1.0 mL/min, λ = 365 nm), t_R = 13.68 min (minor), t_R = 14.07 min (major), 69% ee; [α]25 D = +227.6 (c 0.58, CH₂Cl₂); HRMS (ESI): calculated [M+Na]⁺ for C₁₇H₁₅NNaO₂: 288.0995, found [M+Na]⁺: 288.0973.

(S)-2-((S)-2-Oxocyclohexyl)-2-phenylindolin-3-one (12b)

12bYellow solid; Reaction times: 60 h; dr: >20:1; Yield: 64%; m. p.:154-156 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.58 – 7.52 (m, 3H), 7.44 (t, J = 7.2 Hz,1H), 7.35 – 7.22 (m, 3H), 6.96 (d, J = 8.0 Hz, 1H), 6.84 (t, J = 7.6 Hz, 1H), 5.21 (s,

1H), 3.52 (dd, J = 13.2, 5.2 Hz, 1H), 2.42 – 2.26 (m, 2H), 2.10 – 1.82 (m, 3H), 1.75 – 1.43 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 208.3, 200.9, 159.6, 137.5, 136.4, 128.9, 128.9, 127.9, 125.6, 125.0, 125.0, 121.4, 119.4, 111.9, 71.5, 58.7, 42.1, 28.5, 26.8, 25.2; The Enantiomeric excess (ee) was determined by HPLC with an OD-H column (n-hexane/i-PrOH = 80:20, flow rate 1.0 mL/min, λ = 365 nm), t_R = 12.27 min (minor), t_R = 14.63 min (major), 98% ee; [α]25 D = +309.4 (*c* 1.06, CH₂Cl₂); HRMS (ESI): calculated [M+Na]⁺ for C₁₉H₂₀NNaO₂: 328.1308, found [M+Na]⁺: 328.1315.

(S)-2-((R)-4-Oxotetrahydro-2H-pyran-3-yl)-2-phenylindolin-3-one (12c)

Yellow solid; Reaction times: 60 h; dr: >20:1; Yield: 58%; m. p.:

100-102 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.59 (d, J = 8.0 Hz, 1H), 7.56 – 7.52 (m, 2H), 7.47 (qd, J = 7.2, 1.6 Hz, 1H), 7.37 – 7.31 (m, 2H), 7.29 – 7.26 (m, 1H), 6.98 (d, J = 8.4 Hz,1H), 6.87 (qd, J = 7.6, 0.8 Hz, 1H), 5.26 (s, 1H), 4.21 – 4.12 (m, 1H), 4.07 (qd, J = 6.0, 1.6 Hz, 1H), 3.78 – 3.68 (m, 2H), 3.61 (dd, J = 10.8, 10.0 Hz, 1H), 2.68 – 2.58 (m, 1H), 2.37 (td, J = 15.2, 3.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 203.8, 199.4, 159.5, 136.8, 136.1, 129.2, 129.2, 128.3, 125.4, 125.4, 120.6, 119.9, 111.9, 70.0, 68.9, 67.8, 57.8, 42.4; The Enantiomeric excess (ee) was determined by HPLC with an OD-H column (n-hexane/i-PrOH = 80:20, flow rate 1.0 mL/min, $\lambda = 365$ nm), t_R = 13.23 min (minor), t_R = 18.11 min (major), 96% ee; [α]25 D = +308.6 (*c* 0.70, CH₂Cl₂); HRMS (ESI): calculated [M+Na]⁺ for C₂₉H₁₇NNaO₃: 330.1101, found [M+Na]⁺: 330.1127.

(S)-2-((S)-4-Oxotetrahydro-2H-thiopyran-3-yl)-2-phenylindolin-3-one (12d)

Yellow solid; Reaction times: 60 h; dr: >20:1; Yield: 55%; m. p.: 116-119 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.53 (m, 3H), 7.46 (qd, J = 7.2, 1.2 Hz, 1H), 7.38 – 7.27 (m, 3H), 6.98 (d, J = 8.0 Hz, 1H), 6.86 (t, J = 7.2 Hz, 1H), 5.27 (s, 1H), 3.85 (dd, J = 10.4, 6.0 Hz, 1H), 2.99 – 2.76 (m,4H), 2.76-2.68 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 205.4, 199.7, 159.4, 136.7, 136.5, 129.2, 128.3, 125.6, 125.3, 121.0, 119.9, 112.0, 71.6, 60.4, 44.4, 30.7, 29.5; The Enantiomeric excess (ee) was determined by HPLC with an OD-H column (n-hexane/i-PrOH = 80:20, flow rate 1.0 mL/min, $\lambda = 365$ nm), $t_R = 11.18$ min (minor), $t_R = 19.87$ min (major), 99% ee; [α]25 D = +280.0 (c 1.40, CH₂Cl₂); HRMS (ESI): calculated [M+Na]⁺ for C₁₉H₁₇NNaO₃S: 346.0873, found [M+Na]⁺: 346.0873.

5. X-ray Crystallographic Data of 12d (CCDC: 2105997)⁴

The single crystals of compound **12d** for X-ray analysis was grown from the mixed solution of hexane and isopropanol (V/V = 10/1). Compounds **12d** was collected at 100 K on a Rigaku Oxford Diffraction Supernova Dual Source, Cu at Zero equipped with an AtlasS2 CCD using Cu K α radiation. Data reduction was carried out with the diffractometer's software.⁵ The structures were solved by direct methods using Olex2 software,⁶ and the non-hydrogen atoms were located from the trial structure and then refined anisotropically with SHELXL-2018⁷ using a full-matrix least squares procedure based on F2. The weighted *R* factor, *wR* and goodness-of-fit *S* values were obtained based on F2. The hydrogen atom positions were fixed geometrically at the calculated distances and allowed to ride on their parent atoms. Crystallographic data for the structure reported in this paper have been deposited at the Cambridge Crystallographic Data Center and allocated with the deposition numbers: **CCDC 2105997** for compound **12d**.⁴ The molecule of **12d** showing the atom-numbering. Displacement ellipsoids drawn at 30% probability level and H-atoms are shown as small arbitrary radii.

c/Å	9.5317(3)
α/°	90.00
β/°	108.193(2)
$\gamma^{/\circ}$	90.00
Volume/Å ³	1851.60(11)
Z	4
$\rho_{calc}mg/mm^3$	1.160
m/mm ⁻¹	1.614
F(000)	680.0
Crystal size/mm ³	$? \times ? \times ?$
2Θ range for data collection	10.52 to 144.58°
Index ranges	$\textbf{-11} \leq h \leq 11, \textbf{-27} \leq k \leq 27, \textbf{-11} \leq l \leq 11$
Reflections collected	33663
Independent reflections	6921[R(int) = 0.0488]
Data/restraints/parameters	6921/1/416
Goodness-of-fit on F ²	1.130
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0729, wR_2 = 0.1988$
Final R indexes [all data]	$R_1 = 0.0793, wR_2 = 0.2133$
Largest diff. peak/hole / e Å-3	80.53/-0.67
Flack parameter	0.07(2)

6. References

- 1. A. C. Lindsay, I. K. H. Leung, J. Sperry, Org. Lett. 2016, 18, 5404.
- 2. K.-Q. Ling, Synth. Commun. 1995, 23, 3831.
- 3. M. Yamashita, Y. Nishizono, S. Himekawa, A. Iida, Tetrahedron. 2016, 72, 4123.
- 4. Y.-L. Zhao, J.-X. An, F.-F. Yang, X. Guan, X.-Z. Fu, Z.-Q. Li, D.-P. Wang, M. Zhou, Y.-Y.
- Yang, B. He. Adv. Synth. Catal. 2022, DOI: 10.1002/adsc.202101498.
- 5. Agilent Technologies, CrysAlisPRO, Version 1.171.36.28, 2013.
- 6. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. Appl. Cryst. 2009, 42, 339-341.
- 7. D. Kratzert, J. J. Holstein, I. Krossing, J. Appl. Cryst. 2015, 48, 933-938.

7. NMR spectra⁴

$\begin{array}{c} -2.223\\ -2.2233\\ -2.2233\\ -2.2233\\ -2.225\\ -2.2233\\ -2.2233\\ -2.225\\ -2.2233\\ -2.225\\ -2.225\\ -2.225\\ -2.225\\ -2.225\\ -2.225\\ -2.25\\ -2$

 $\begin{array}{c} & (177.02) \\ & (171.03) \\ & (171.03) \\ & (134.06) \\ & (134.06) \\ & (134.06) \\ & (141.38)$

7,607 7,607 7,603 7,558 7,569 7,569 7,566 7,465 7,445 7,445 7,745 7,745 7,7425 7,7425 7,7425 7,7425 7,7425 7,7425 7,7425 7,7425 7,7425 7,7425 7,7425 7,7425 7,7425 7,7425 7,7425 7,7425 7,73245 5,397 5,375 5,395 5,375 5,375 5,395 5,375 5,3955

77.607 77.603 77.603 77.525 77.525 77.455 77.445 77.445 77.445 77.445 77.445 77.445 77.425 77.324 77.324 77.324 77.324 77.324 77.324 77.324 77.324 77.324 77.324 77.324 77.324 77.324 77.324 77.324 77.324 77.326 77.36 77.777

82 83 83 83 83 83 83 84 84 85 85 85 85 85 85 85 85 85 85 85 85 85	550 550 550 550 550 550 550 550 550 550	10
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0 O



#### 7, 560 7, 7, 561 7, 7, 583 7, 7, 583 7, 7, 583 7, 7, 583 7, 7, 583 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203 7, 203







250 230 210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -20 f1 (ppm)





240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)





250 230 210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -20 fl (ppm)



#### 7,575 7,5758 7,5758 7,75758 7,4575 7,73175 7,73175 7,73175 7,73175 7,73175 7,73175 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,7272 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,72722 7,7272722 7,7272722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722 7,77722







#### 7.591 7.564 7.564 7.564 7.564 7.564 7.564 7.7564 7.7564 7.7361 7.7364 7.7313 7.7334





8. ¹H NMR spectra of crude products to determine diastereomeric ratio

#### 7.569 7.545 7.545 7.536 7.531 7.531 7.533 7.447 7.333 7.3447 7.3447 7.333 7.7314 7.7333 7.7314 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7344 7.7333 7.7344 7.7333 7.7344 7.2444 7.2449 7.2449 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.2697.269

















#### -7.175 -7.155 -7.155 -7.155 -7.475 -7.475 -7.475 -7.475 -7.1233 -7.1219 -7.1219 -7.1219 -7.1219 -7.1219 -7.1219 -7.1219 -7.1219 -7.1219 -7.12333 -7.1219 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.196 -5.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561 -2.2561-2.256











#### -5.300 -5.300 -5.300 -5.300 -5.300 -5.300 -5.300 -5.300 -5.300 -5.300 -5.300 -5.301 -5.301 -5.301 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302 -5.302-5.3



### 9. HPLC spectra



## HPLC using an IC-H column (hexane:*i*-PrOH=90:10, 1 mL/min)



HPLC using an IC-H column (hexane:*i*-PrOH=90:10, 1 mL/min)



Dealr	Processed	Retention	Peak Area	Peak Hight	Peak Area
Реак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA 365 nm	12.363	4833403	196408	98.711
2	PDA 365 nm	16.614	63105	2007	1.289



## HPLC using an IC-H column (hexane:*i*-PrOH=80:20, 1 mL/min)

D 1-	Processed	Retention	Peak Area	Peak Hight	Peak Area
Реак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA 365 nm	8.235	882520	43464	51.204
2	PDA 365 nm	10.786	650411	32107	48.796



Dealr	Processed	Retention	Peak Area	Peak Hight	Peak Area
Реак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA 365 nm	7.175	6999260	494573	98.583
2	PDA 365 nm	9.193	100600	5974	1.417



HPLC using an IC-H column (hexane:*i*-PrOH=80:20, 1 mL/min)



Dealr	Processed	Retention	Peak Area	Peak Hight	Peak Area
Реак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA 365 nm	7.912	3739356	228475	96.324
2	PDA 365 nm	12.303	142709	7837	3.676





mV 检测器A 365nm 150-100-N H 11e 50-ЮH 0-2.5 5.0 7.5 10.0 12.5 15.0 0.0  $\min$ 

Dealr	Processed	Retention	Peak Area	Peak Hight	Peak Area
Реак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA 365 nm	7.623	2885803	172338	88.779
2	PDA 365 nm	13.578	364760	17090	11.221





Deals	Processed	Retention	Peak Area	Peak Hight	Peak Area
Реак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA 365 nm	10.695	8742636	430938	49.655
2	PDA 365 nm	11.459	8864110	394652	50.345



0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

min

Deals	Processed	Retention	Peak Area	Peak Hight	Peak Area
Реак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA 365 nm	10.639	3011208	152160	13.659
2	PDA 365 nm	11.401	19035093	794046	86.341





11.288

	۲	7
ш	1	l

2

PDA 365 nm



1227648

56310

55.141

Dealr	Processed	Retention	Peak Area	Peak Hight	Peak Area
Реак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA 365 nm	9.654	654394	47437	7.748
2	PDA 365 nm	11.250	7791587	349494	92.152





Реак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA 365 nm	9.731	604756	37869	50.130
2	PDA 365 nm	11.699	601631	25578	49.870



Dool	Processed	Retention	Peak Area	Peak Hight	Peak Area
Геак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA 365 nm	9.732	537003	38403	6.554
2	PDA 365 nm	11.682	7656664	337168	93.446





16.254

mV

2

PDA 365 nm



683272

16918

50.051

Doolr	Processed	Retention	Peak Area	Peak Hight	Peak Area
reak	Channel	Time (min)	Time (min)(mAU*s)(mA16.070170(05)500	(mAU)	(%)
1	PDA 365 nm	16.870	1796956	58863	24.037
2	PDA 365 nm	18.903	5678929	157878	75.963







Dool	Processed	Retention	Peak Area	Peak Hight	Peak Area
геак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA 365 nm	9.210	1137068	61758	15.864
2	PDA 365 nm	11.011	6030419	261735	84.136



18.711

HPLC using an IC-H column (hexane:*i*-PrOH=90:10, 1 mL/min)

mV

PDA 365 nm

2



3172842

78140

50.981

Dool	Processed	Retention	Peak Area	Peak Hight	Peak Area
геак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA 365 nm	14.975	686211	238037	90.068
2	PDA 365 nm	20.196	756677	21913	9.932





Processed Peak Area Peak Hight Peak Area Retention Peak Time (min) (mAU*s) (mAU) (%) Channel 1661979 1 PDA 365 nm 11.684 68852 50.212 2 PDA 365 nm 13.984 1647963 59285 49.788





Deals	Processed	Retention	Peak Area	Peak Hight	Peak Area
Реак	Channel	Time (min) (mAU*s)	(mAU)	(%)	
1	PDA 365 nm	11.735	688900	30080	10.072
2	PDA 365 nm	13.980	6151066	223150	89.928

HPLC using an IC-H column (hexane:*i*-PrOH=90:10, 1 mL/min)



Dealr	Processed	Retention	Peak Area	Peak Hight	Peak Area
Реак	Channel	Time (min)	ime (min) (mAU*s) (mA	(mAU)	(%)
1	PDA 365 nm	11.192	778341	28382	48.407
2	PDA 365 nm	12.170	829565	27460	51.593



Deals	Processed	Retention	Peak Area	Peak Hight	Peak Area
геак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA 365 nm	10.619	6001518	305997	94.909
2	PDA 365 nm	11.455	321939	13872	5.091









Dool	Processed	Retention	Peak Area	Peak Hight	Peak Area
геак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA 365 nm	7.932	2568243	165357	91.969
2	PDA 365 nm	13.012	254971	11482	9.031





Deals	Processed	Retention	Peak Area	Peak Hight	Peak Area
Реак	Channel	Time (min)(mAU*s)(mAU)	(mAU)	(%)	
1	PDA 365 nm	9.359	1748390	75720	44.305
2	PDA 365 nm	12.585	2197852	75153	55.695



Dool	Processed	Retention	Peak Area	Peak Hight	Peak Area
Геак	Channel	Time (min)	(mAU*s) (mAU) 3717695 160857	(%)	
1	PDA 365 nm	9.338	3717695	160857	92.116
2	PDA 365 nm	12.577	318206	10576	7.884





Deals	Processed	Retention	Peak Area	Peak Hight	Peak Area
Реак	Channel	Time (min)	Peak Area Peak Hight   (mAU*s) (mAU)   3009153 140520   3789475 161504	(mAU)	(%)
1	PDA 365 nm	13.328	3009153	140520	44.261
2	PDA 365 nm	14.667	3789475	161504	55.739



Peak	Processed	Retention	Peak Area	Peak Hight	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA 365 nm	13.676	2116911	95570	15.439
2	PDA 365 nm	14.065	11594318	453830	84.561



HPLC using an OD-H column	(hexane:i-PrOH=80:20, 1 mL/min)	
---------------------------	---------------------------------	--

Peak	Processed	Retention	Peak Area	Peak Hight	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA 365 nm	12.559	14327362	758617	43.794
2	PDA 365 nm	13.605	18387789	880691	56.206



Peak	Processed	Retention	Peak Area	Peak Hight	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA 365 nm	12.272	52838	1123	0.719
2	PDA 365 nm	14.631	7297431	149045	99.281

HPLC using an OD-H column (hexane:*i*-PrOH=80:20, 1 ml/min)





Peak	Processed	Retention	Peak Area	Peak Hight	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA 365 nm	13.229	79590	2585	1.935
2	PDA 365 nm	18.106	4034322	79418	98.065

HPLC using an OD-H column (hexane:*i*-PrOH=80:20, 1 mL/min)



Peak	Processed	Retention	Peak Area	Peak Hight	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA 365 nm	11.458	2239238	58420	50.928
2	PDA 365 nm	19.636	2157630	32658	49.072

检测器A 365nm 200-Q Ph 150-N 100-Ó 12d 50-0-5 10 15 25 30 20 0 min

Peak	Processed	Retention	Peak Area	Peak Hight	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	PDA 365 nm	11.183	34551	917	0.238
2	PDA 365 nm	19.871	14512252	216170	99.762