Supporting Information for

Synthesis and Crystal Structure of Sulphur-Bridged Molecular Hoop Consisting of 5,7,12,14-Tetrathiapentacene

Masafumi Ueda* and Yasuhiro Mazaki

Department of Chemistry, Graduate School of Science, Kitasato University, 1-15-1 Kitasato Minamiku, Sagamihara, Kanagawa, Japan

Table of Contents

2
7
9
10
11
18

1. Experimental Procedures

General Information

All reagents were commercially sourced. Melting points were determined using a Yanaco MP-500P micro melting point apparatus. ¹H (600 MHz) and ¹³C NMR (150 MHz) spectra were reported on a Bruker AVANCE 600 instrument. The following abbreviations were used to explain the multiplicities: singlet (s); doublet (d); triplet (t); double doublet (dd); multiplet (m). Absorption spectra were recorded on a JASCO V-560 instrument. IR spectra of KBr-pressed pellet samples were measured employing a JASCO FT/IR Spectrometer. MS spectra were determined on a Thermo Scientific, Exactive Plus Orbitrap Mass spectrometer for ionization. Only relatively intense peak or structurally diagnostic mass spectral fragment ion peaks were reported. The diffraction data for TC[2]TTP, 6', and 6'' at 120 or 100 K were collected using a Rigaku XtaLAB Synergy-S system with multilayer mirrormonochromatized CuKa radiation ($\lambda = 1.54184$ Å) at Kitasato University. Raw frame data were integrated using CrysAlisPro.1 The crystal structures were solved employing SHELXT² and refined using full-matrix least squares in F2 (SHELXL).³ Theoretical calculation was performed at the Research Center for Computational Science at Okazaki using the Gaussian 16 program (Revision C. 01).⁴ Cyclic voltammetry was recorded on a HOKUTO DENKO HZ-5000 automatic polarization system. The CV cell consisted of Pt working electrode, Pt wire counter electrode, and an Ag/AgNO₃ reference electrode. The measurement was carried out in CH₂Cl₂ and benzonitrile solution of sample with a concentrate 0.1 M n-Bu₄N·PF₆ as a supporting electrolyte. All redox potentials were measured against Ag/Ag⁺ and converted to vs. Fc/Fc⁺.

Synthesis of 2-butyl-1,3-dichlorobenzene (2): To a 200 mL 3-necked recovery flask was added 1,3dichlorobenzene (3.9 mL, 34 mmol) and THF (46 mL), and the mixture was cooled at -78 °C. A 1.6 M hexane solution of *n*-BuLi (21 mL, 34 mmol)was slowly added and stirred at -78 °C for 2 h. The THF (37 mL) solution of dibutyl sulfate (7.4 mL, 37 mmol) was added to the resultant colorless suspension of the lithium salt. The reaction mixture was stirred for 12 h and was then quenched with H₂O, extracted with hexane and dried over MgSO₄. The organic solution was evaporated under reduced pressure. The residue was purified by column chromatography on silica gel using hexane as eluent to give 2-butyl-1,3-dichlorobenzene (4.2 g, 21 mmol) as a colorless oil in 61% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.25 (d, *J* = 7.8 Hz, 2H), 7.02 (t, *J* = 8.4 Hz, 1H), 2.90 (t *J* = 8.4 Hz, 2H), 1.58-1.54 (m, 2H), 1.47-1.41 (m, 2H), 0.96 (t, *J* = 7.8 Hz, 3H), ¹³C NMR (150 MHz, CDCl₃) δ 138.9, 135.4, 128.2, 127.4, 31.2, 30.5, 22.9, 14.0. HRMS (ESI, positive mode): m/z calcd for C₁₀H₁₂Cl₂: [M] 202.0311; found 202.0311. Analytical data was found to match literature data.⁵

Synthesis of 3-butyl-2,4-Dichloro-1,5-diiodobenzene (3): To a 300 mL recovery flask was added periodic acid (2.1 g, 9.3 mmol) and 20 mL of concentrated sulfuric acid. To the colorless solution was slowly added KI (3.3 g, 28 mmol) at 0 °C, and 2-butyl-1,3-dichlorobenzene (3.8 g, 19 mmol) was quickly added. After stirring at ambient temperature for 12 h, ice was added to the reaction mixture. The generated solid was collected via filtration, and purified by column chromatography on silica gel using hexane as the eluent. After evaporation of the solvent, the residue was recrystallized by MeOH/EtOH at 0 °C to afford 3-butyl-2,4-dichloro-1,5-diiodobenzene (4.6 g, 10 mmol) as a colorless needles in 54% yield. Mp = 67–59 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.23 (s, 1H), 3.10 (t, *J* = 7.8 Hz, 2H), 1.56-1.51 (m, 2H), 1.50-1.41 (m, 2H), 0.96 (t, *J* = 7.2 Hz, 3H), ¹³C NMR (150 MHz, CDCl₃) δ 146.9, 141.3, 139.4, 98.0, 35.7, 29.9, 22.9, 13.9. UV-vis (CH₂Cl₂, *c* = 1.7×10⁻⁵ M) λ_{max} (ε) 255 (6831, sh), 248 (14894, sh), 236 (25816) nm, IR (KBr) 2949, 2924, 2866, 1465, 1453, 1390, 1343, 1192, 1178, 1103, 1079, 929, 865, 727, 581 cm⁻¹, HRMS (ESI, positive mode): *m/z* calcd for C₁₀H₁₀Cl₂I₂ [M] 453.8243; found 453.8246.

Synthesis of (3-butyl-2,4-dichloro-5-iodophenyl)(methyl)sulphane (4): To a 100 mL second necked recovery flask was added 3-butyl-2,4-dichloro-1,5-diiodobenzene (2.4 g, 5.3 mmol) and dry THF (10 mL) under argon atmosphere, and the mixture was cooled to -78 °C. The THF solution of *i*-PrMgCl·LiCl (1.3 M, 4.9 mL, 6.3 mmol) was slowly added and stirred for 24 h. The prepared magnesium reagent was added to a solution of prepared *S*-methylbenzenesulphonothioate (1.1 g, 5.8 mmol)⁶ in dry THF at -78 °C. The resulting solution was stirred at ambient temperature for 2 h and was then quenched with sat. NH₄Claq., extracted with CH₂Cl₂ and dried over anhydrous Na₂SO₄. The organic solution was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using hexane as the eluent to afford (3-butyl-2,4-dichloro-5-iodophenyl)(methyl)sulphane (1.5 g, 3.9 mmol) as a colorless solid in 73% yield. Mp = 44–46 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.41 (s, 1H), 3.01 (t, *J* = 7.8 Hz, 2H), 2.44 (s, 3H), 1.55-1.49 (m, 2H),

1.47-1.41 (m, 2H), 0.96 (t, J = 7.2 Hz, 3H), ¹³C NMR (150 MHz, CDCl₃) δ 140.3, 139.1, 134.9, 132.7, 132.3, 97.7, 33.8, 30.1, 22.9, 15.7, 14.0. UV-vis (CH₂Cl₂, $c = 1.0 \times 10^{-5}$ M) λ_{max} (ϵ) 314 (2529, sh), 303 (3182, sh), 266 (14561), 238 (29623) nm, IR (KBr) 2952, 2924, 2871, 2857, 1543, 1525, 1464, 1455, 1433, 1417, 1395, 1351, 1323, 1252, 1186, 1104, 1071, 930, 911, 846, 733, 613 cm⁻¹, HRMS (ESI, positive mode): m/z calcd for C₁₁H₁₃Cl₂IS [M] 373.9154; found 373.9154.

Synthesis of (5-butyl-4,6-dichloro-1,3-phenylene)bis(methylsulphane) (5): To a 100 mL second necked recovery flask was added (3-butyl-2,4-dichloro-5-iodophenyl)(methyl)sulfane (1.4g, 3.8 mmol) and THF (15 mL) under argon atmosphere, and the mixture was cooled to -78 °C. The THF solution of i-PrMgCl·LiCl (1.3 M, 3.6 mL, 4.6 mmol) was slowly added and stirred for 48 h. The prepared magnesium reagent was added to a solution of prepared S-methylbenzenesulphonothioate (0.8 g, 4.2 mmol) in dry THF at -78 °C. The resulting mixture was stirred at ambient temperature for 2 h and was then quenched with sat. NH₄Claq., extracted with CH₂Cl₂ and dried over anhydrous Na₂SO₄. The organic solution was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using hexane as the eluent to afford (5-butyl-4,6-dichloro-1,3phenylene)bis(methylsulphane) (0.68 g, 2.3 mmol) as a colorless needles in 60% yield. Mp = 80-82 °C. ¹H NMR (600 MHz, CDCl₃) δ 6.79 (s, 1H), 2.94 (t, J = 7.8 Hz, 2H), 2.48 (s, 6H), 1.56-1.51 (m, 2H), 1.47-1.41 (m, 2H), 0.96 (t, J = 7.2 Hz, 3H), ¹³C NMR (150 MHz, CDCl₃) δ 139.6, 137.3, 128.9, 119.6, 32.1, 30.2, 23.0, 15.9, 14.0. UV-vis (CH₂Cl₂, $c = 1.4 \times 10^{-5}$ M) λ_{max} (ε) 318 (563), 305 (300), 273 (8125, sh), 265 (10641, sh), 248 (18996) nm, IR (KBr) 2959, 2919, 2869, 2857, 1537, 1465, 1456, 1441, 1421, 1400, 1376, 1358, 1205, 1192, 1104, 1077, 963, 926, 919, 823, 730, 647, 475 cm⁻¹, HRMS (ESI, positive mode): m/z calcd for $C_{12}H_{16}Cl_2S_2$ [M] 294.0065; found 294.0066.

Synthesis of 3-butyl-2,4-dichloro-1,5-bis(methylsulphinyl)benzene (6): To a 100 mL recovery flask was added (5-butyl-4,6-dichloro-1,3-pheylene)bis(methylsulfane) (500 mg, 1.69 mmol), mCPBA (835 mg, 3.39 mmol), NaHCO₃ (285 mg, 3.39 mmol), and CH₂Cl₂ (20 mL). The mixture was stirred at 0 °C for 2 h. Then, Na₂S₂O₃aq. was poured into the flask and extracted with CH₂Cl₂ and

dried over anhydrous MgSO₄. After filtration, the organic solution was evaporated under reduced pressure. The residue was purified by column chromatography on silica gel using EtOAc as the eluent to give 3-butyl-2,4-dichloro-1,5-bis(methylsufinyl)benzene (503 mg, 1.54 mmol) as a diastereomeric mixture **6'** and **6''** of colorless needles in 91% yield (isolated yield: **6'** = 45%; **6''** = 46%, respectively). The absolute configuration was determined by single crystal X-ray diffraction analysis. **6'**: ¹H NMR (600 MHz, CDCl₃) δ 8.56 (s, 1H), 2.98 (t, *J* = 8.4 Hz, 2H), 2.85 (s, 6H), 1.58-1.53 (m, 2H), 1.51-1.45 (m, 2H), 0.99 (t, *J* = 7.2 Hz, 3H), ¹³C NMR (150 MHz, CDCl₃) δ 146.0, 141.1, 132.8, 120.5, 41.6, 30.5, 30.2, 22.9, 13.9; **6''**: ¹H NMR (600 MHz, CDCl₃) δ 8.46 (s, 1H), 2.98 (t, *J* = 8.4 Hz, 2H), 2.87 (s, 6H), 1.59-1.53 (m, 2H), 1.51-1.45 (m, 2H), 0.99 (t, *J* = 7.2 Hz, 3H), ¹³C NMR (150 MHz, CDCl₃) δ 8.46 (s, 1H), 2.98 (t, *J* = 8.4 Hz, 2H), 2.87 (s, 6H), 1.59-1.53 (m, 2H), 1.51-1.45 (m, 2H), 0.99 (t, *J* = 7.2 Hz, 3H), ¹³C NMR (150 MHz, CDCl₃) δ 145.8, 141.1, 132.7, 120.3, 41.7, 30.5, 30.2, 22.9, 13.9. Mp = 112–115 °C. UV-vis (CH₂Cl₂, *c* = 1.5×10⁻⁵ M) λ_{max} (ε) 258 (13783) nm, IR (KBr) 3037, 2956, 2925, 2869, 1717, 1547, 1467, 1455, 1429, 1413, 1386, 1365, 1301, 1284, 1204, 1140, 1065, 946, 930, 911, 841, 681, 448 cm⁻¹, HRMS (ESI, positive mode): *m/z* calcd for C₁₂H₁₆Cl₂O₂S₂ [MH] 327.0042; found 327.0041.

Synthesis of 7: To a 100 mL Schlenk tube was added 4,4'-thiobisbenzenethiol (230 mg, 0.917 mmol), 3-butyl-2,4-dichloro-1,5-bis(methylsulphinyl)benzene (300 mg, 0.917 mmol), K₂CO₃ (266 mg, 1.93 mmol), and dry DMF (92 mL) under argon atmosphere. The mixture was stirred at 150 °C for 24 h. After cooling to ambient temperature, the mixture was poured into 10% acetic acid (230 mL). The water phase was extracted with CH₂Cl₂, the organic solution was washed by NaHCO₃aq. and dried over MgSO₄. The organic phase was evaporated under reduced pressure. The residue was purified by recycling gel permeation chromatography and column chromatography on silica gel using EtOAc as the eluent to obtain 7 (127 mg, 0.126 mmol) as a colorless needle consisting of the mixture of structural isomers in 27% yield. These could not be isolated. Mp = 185–187 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.76 and 8.63 (s×2, 2H), 7.20–7.14 (m, 8H), 6.93–6.79 (m, 8H), 2.93–2.2.76 (m, 16H), 1.48–1.25 (m, 8H), 0.90–0.805 (m, 6H).¹³C NMR (150 MHz, CDCl₃) δ 158.1, 155.8, 155.8, 153.9, 149.7, 148.0, 135.4, 135.3, 134.7, 134.1, 134.0, 133.8, 133.7, 133.1, 132.5, 132.3, 132.2, 132.1, 131.2, 131.1, 130.7, 127.7, 127.6, 126.9, 126.7, 126.6, 121.0, 120.8, 120.8, 43.3, 43.3, 42.9, 41.4, 33.4, 31.9, 31.5, 31.5, 23.2, 23.1, 13.9, 13.9. UV-vis (CH₂Cl₂, *c* = 1.0×10⁻⁵ M) λ_{max} (ε) 335 (8968, sh), 300 (27834,

sh), 275 (49874, sh) nm, IR (KBr) 2955, 2925, 2868, 1637, 1574, 1474, 1389, 1096, 1061, 1010, 956, 812, 495 cm⁻¹, HRMS (ESI, positive mode): *m*/*z* calcd for C₄₈H₄₈O₄S₁₀ [MH] 1009.0832; found 1009.0833.

Synthesis of TC[2]TTP: To a 50 mL second-necked recovery flask was added compound 7 (56 mg, 0.055 mmol), P₂O₅ (8.3 mg, 0.055 mmol), and trifluoromethanesulfonic acid (11 mL) under argon atmosphere. The reaction mixture was stirred at 80 °C for 72 h, and was then poured into pyridine/H₂O mixture (55 mL, 1:1 (v/v)), and was refluxed for 24 h. After cooling to ambient temperature, the pyridine was evaporated under reduced pressure. The precipitate was collected via filtration and purified by column chromatography on silica gel using CS₂ as the eluent to give TC[2]TTP (12 mg, 0.014 mmol) in 24% yield. Mp = 282 °C (decomp.). ¹H NMR (600 MHz, CDCl₃) δ 7.43 (dd, *J* = 1.8, 8.4 Hz, 4H), 7.38 (d, *J* = 8.4 Hz, 4H), 7.14 (s, 2H), 7.06 (d, *J* = 1.8 Hz, 4H), 3.16 (t, *J* = 7.8 Hz, 4H), 1.58-1.51 (m, 8H), 1.06 (t, *J* = 7.2 Hz, 6H), ¹³C NMR (150 MHz, CDCl₃) δ 141.1, 137.2, 136.1, 135.4, 134.5, 133.4, 131.9, 128.5, 126.5, 33.4, 32.4, 23.2, 14.3. UV-vis (CH₂Cl₂, *c* = 1.3×10⁻⁵ M) λ_{max} (ε) 277 (95118) nm, IR (KBr) 2952, 2924, 2856, 1560, 1542, 1446, 1392, 1362, 1250, 1119, 1084, 1038, 875, 810, 714, 679, 589, 466, 445 cm⁻¹, HRMS (ESI, positive mode): *m/z* calcd for C₄₄H₃₂S₁₀ [M] 879.9706; found 879.9710.

2. Crystal data for data for TC[2]TTP, $6^\prime,$ and $6^{\prime\prime}$

Compound	TC[2]TTP	TC[2]TTP·2CHCl ₃	TC[2]TTP·2benzene	TC[2]TTP·toluene
Formula	$C_{44}H_{32}S_{10}$	C ₄₆ H ₃₄ Cl ₆ S ₁₀	$C_{56}H_{44}S_{10}$	$C_{51.27}H_{40.3}S_{10}$
Formula weight	881.29	1120.03	1037.50	976.91
<i>т</i> [К]	120.15	100.15	100.15	100.15
Crystal system	triclinic	triclinic	triclinic	monoclinic
Space group	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1	P21/c
a [Å]	10.4234(5)	10.1044(4)	9.6067(3)	13.2924(3)
b [Å]	10.8106(5)	11.5761(4)	11.3115(2)	6.26750(10)
c [Å]	11.3323(3)	12.2229(6)	11.6687(2)	27.5289(7)
α [deg]	93.809(3)	116.082(4)	76.325(2)	90
β [deg]	104.307(4)	106.355(4)	78.743(2)	99.973(2)
γ[deg]	118.489(5)	92.129(3)	88.930(2)	90
V [Å3]	1061.75(9)	1193.85(10)	1207.84(5)	2258.78(9)
Z	1	1	1	2
D _{calc} [g/cm ³]	1.378	1.558	1.426	1.436
μ [mm ⁻¹]	5.055	7.647	4.534	4.811
<i>F</i> (000)	456.0	572.0	540.0	1016.0
Crystal size [mm]	0.024×0.067×0.111	0.093×0.107×0.338	0.131×0.164×0.534	0.042×0.058×0.576
Reflections collected	8961	12478	10752	9764
Independent reflection	3961 [<i>R</i> _{int} = 0.0328]	4462 [<i>R</i> _{int} = 0.0251]	4499 [<i>R</i> _{int} = 0.0311]	4234 [R _{int} = 0.0278]
Parameters	245	318	299	302
Goodness-of-fit on <i>F</i> ²	1.041	1.060	1.096	1.062
R1, wR2 [I>2ơ(I)]	0.0327, 0.0828	0.0642, 0.1768	0.0380, 0.0933	0.0332, 0.0860
R1, wR2 [all data]	0.0382, 0.0857	0.0655, 0.1782	0.0391, 0.0942	0.0367, 0.0883
ccdc number	2141641	2153527	2153528	2153529

 Table S1. Crystal data for TC[2]TTP, 6', and 6''

6′	6′′
$C_{24}H_{32}CI_4O_4S_4$	$C_{24}H_{32}CI_4O_4S_4$
654.53	654.53
100.15	120.15
Monoclinic	triclinic
P2 ₁ /n	<i>P</i> -1
9.1703(2)	9.4018(4)
14.5677(3)	9.7068(5)
22.8030(5)	16.7103(9)
90	79.588(4)
99.171(2)	76.006(4)
90	88.447(4)
3007.32(11)	1455.16(13)
4	2
1.446	1.494
6.416	6.629
1360.0	680.0
0.591×0.311×0.011	0.386×0.135×0.07
21774	13636
5998 [<i>R</i> _{int} = 0.0630]	5453 [<i>R</i> _{int} = 0.0568]
331	331
1.054	1.088
0.0695, 0.1934	0.0466, 0.1213
0.0746, 0.2002	0.0487, 0.1237
2141642	2141643

Table S1. Crystal data for TC[2]TTP, 6', and 6''

3. ESI-MS spectra

Figure S1. ESI-MS spectra: a) and b) the reaction mixture in macrocyclization.

Figure S2. ESI-MS spectrum of TC[2]TTP.

4. Theoretical Calculation

Figure S3. Optimized structures of structural isomer of TC[2]TTP at RB3LYP/6-31G level of theory.

5. ¹H and ¹³C NMR spectra

Figure S5. ¹³C NMR spectrum of 3 (150 MHz, CDCl₃).

Figure S7. ¹³C NMR spectrum of 4 (150 MHz, CDCl₃).

Figure S9. ¹³C NMR spectrum of 5 (150 MHz, CDCl₃).

Figure S11. ¹³C NMR spectrum of 6' (150 MHz, CDCl₃).

Figure S13. ¹³C NMR spectrum of 6'' (150 MHz, CDCl₃).

Figure S15. ¹³C NMR spectrum of 7 (150 MHz, CDCl₃).

Figure S17. ¹³C NMR spectrum of TC[2]TTP (150 MHz, CS₂/CDCl₃).

6. References

- CrysAlisPro: Data collection and Processing Software Package, Rigaku Oxford Diffraction, Rigaku Corporation, 2019, Yarton, England.
- 2. G. M. Scheldrick, Acta Crystallogr. 2015, A71, 3-8.
- 3. G. M. Scheldrick, Acta Crystallogr. 2015, C71, 3-8.
- Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Peterson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gromperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Edigi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyenger, J. Tomasi, M. Cossi, J. M. Millam, M. klene, C. Adamo, R. Cammi,, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford Ct, 2016.
- N. Weidmann, M. Ketels, P. Knochel, Angew. Chem. Int. Ed. 2018, 57, 10748-10751, Angew. Chem. 2018, 130, 10908-10911.
- 6. K. Fujiki, N. Tanifuji, Y. Sasaki, T. Yokohama, Synthesis 2002, 3, 343-348.