Supporting information for

Electrochemical Deposition of Amorphous Cobalt Oxides for Oxygen Evolution Catalysis

Wei Liu^a, Masao Kamiko^a, Ikuya Yamada^b, Shunsuke Yagi^{a,*}

^aInstitute of Industrial Science, The University of Tokyo, 4–6–1 Komaba, Meguro-ku, Tokyo 153–8505, Japan

^bDepartment of Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1–2 Gakuen-cho, Naka-ku, Sakai, Osaka 599–8531, Japan

*Corresponding author

Email address: syagi@iis.u-tokyo.ac.jp (S. Yagi)

Figure S1 Chronoamperogram during the electrodeposition of Co_3O_4 on the CP in a 0.2-M $Co(NO_3)_2$ aqueous solution at -0.7 V vs. Ag/AgCl (saturated KCl).

Figure S2 Equivalent circuit used in curve fittings of EIS spectra displayed in Fig. 3b and Fig. 5c.

Figure S3 XRD patterns of CoO_x/VS₂/CP (2 C) and CoO_x/VS₂/CP (8 C) acquired with a Mo target (0.7107 Å).

Figure S4 SEM images of VS₂/CP and CoO_x/VS₂/CP with different Co deposition amounts. The scale bar corresponds to 10 μ m.

Figure S5 XRD patterns of the synthesized catalysts acquired with the Mo target (0.7107 Å).

Figure S6 Full XP spectra of VS₂/C and CoO_x/VS₂/CP (0.5 C) before and after the cyclic voltammetry in the range of 1.23 to 1.83 V vs. RHE at a scan rate of 10 mV/s for 100 cycles.

Figure S7 Deconvoluted XP spectra in the Co $2p_{3/2}$ and S 2p regions of Co₃O₄/CP (0.5 C), VS₂/CP, and CoO_x/VS₂/CP (0.5 C) before and after the cyclic voltammetry in the range of 1.23 to 1.83 V vs. RHE at a scan rate of 10 mV/s for 100 cycles^{1,2}.

Figure S8 (a) Cyclic voltammograms and (b) Nyquist plots of EI spectra measured for VS_2 at the 1st cycle and 100th cycle.

Figure S9 Nyquist plots of EI spectra measured for $CoO_x/VS_2/CP$ (0.5 C) at the 1st cycle and 100th cycle.

Sample	Temperature/°	Electric	Time/h	2ϑ/°	FWHM/°
	С	quantity/C			
Co ₃ O ₄ /CP	200	0.1	1	16.8	0.427
Co ₃ O ₄ /CP	200	0.1	3	16.888	0.273
Co ₃ O ₄ /CP	200	0.2	1	16.849	0.402
Co ₃ O ₄ /CP	200	0.2	3	16.919	0.225
Co ₃ O ₄ /CP	250	0.2	1	16.739	0.393
Co ₃ O ₄ /CP	300	0.2	1	16.830	0.385

Table S1 FWHMs of the 311 peaks at 16.8° for the deposited cobalt oxides Co_3O_4 on the CP synthesized at different parameters.

Table S2 Curve fitting results of the Nyquist plots presented in Fig. 3b.

Sample	R_1/Ω	R_2/Ω	<i>C</i> ₂ /μF	<i>R</i> ₃ /Ω	Q ₃ /mF	<i>a</i> ₃
Co ₃ O ₄ /CP (0.5 C)	1.582	14.62	0.3264	44.87	4.355	0.7651
Co ₃ O ₄ /CP (1 C)	1.633	15.97	0.3002	47.39	3.892	0.8246
Co ₃ O ₄ /CP (2 C)	1.333	13.33	0.3187	22	14.01	0.7018
Co ₃ O ₄ /CP (4 C)	1.364	14.64	0.313	34.64	9.078	0.7119
Co ₃ O ₄ /CP (8 C)	1.391	14.21	0.3029	17.35	43.05	0.5757

Table S3 Curve fitting results of the Nyquist plots presented in Fig. 5b.

Sample	R_1/Ω	R_2/Ω	<i>C</i> ₂ /μF	R_3/Ω	Q ₃ /mF	<i>a</i> ₃
СР	1.059	11.93	0.4449	2114	0.1164	0.7963
VS ₂ /CP	1.122	13.6	0.3893	135.1	0.8755	0.8864
Co ₃ O ₄ /CP (0.5 C)	1.582	14.62	0.3264	44.87	4.355	0.7651
CoO _x /VS ₂ /CP (0.5 C)	1.296	14.16	0.3311	9.94	197.6	1

References

- 1. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R. St.C. Smart, *Appl. Surf. Sci.*, 2011, **257**, 7, 2717–2730.
- 2. J. Yang, H. Liu, W.N. Martens, and R.L. Frost, J. Phys. Chem. C, 2010, 114, 1, 111–119.