Supplementary Information

Synthesis, gene silencing activity, thermal stability, and serum stability of siRNA containing four (*S*)-5'-*C*-aminopropyl-2'-*O*-methylnucleosides (A, adenosine; U, uridine; G, guanosine; and C, cytidine)

Ryohei Kajino^a, Shuichi Sakamoto^e and Yoshihito Ueno*^{a, b, c, d}

^aUnited Graduate School of Agricultural Science, Gifu University, ^bDepartment of Life Science and Chemistry, the Graduate School of Natural Science and Technology, Gifu University, ^cCourse of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, ^dCenter for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University 1-1 Yanagido, Gifu, 501-1193, Japan.

^eInstitute of Microbial Chemistry (BIKAKEN), Numazu branch, Microbial Chemistry Research Foundation, 18-24 Miyamoto, Numazu, Shizuoka 410-0301, Japan.

- 1. Figure S1–4. UV melting profiles of the unmodified and modified siRNAs.
- 2. Table S1–6. Sequences of siRNAs and their ability to suppress gene expression.
- **3.** Table S7–9. S Sequences of ssRNAs, siRNAs, and $T_{\rm m}$ values of siRNAs. .
- 4. Figure S5–7. UV melting profiles of the unmodified and modified siRNAs.
- Figure S8. Models of the complex of Argonaute-2 and guide strand position 6–8 of siRNA.
- 6. ¹H and ¹³C{¹H}NMR spectra of compounds 6–21, 23–32, 34, 35 and ³¹P NMR spectra of compounds 22 and 33.

Figure S1. UV melting profiles of the unmodified and modified siRNAs in a buffer

containing 10 mM sodium phosphate (pH 7.0) and 100 mM NaCl.

Figure S2. UV melting profiles of the unmodified and modified siRNAs in a buffer containing 10 mM sodium phosphate (pH 7.0) and 100 mM NaCl.

Figure S3. UV melting profiles of the unmodified and modified siRNAs in a buffer

containing 10 mM sodium phosphate (pH 7.0) and 100 mM NaCl.

Figure S4. UV melting profiles of the unmodified and modified siRNAs in a buffer containing 10 mM sodium phosphate (pH 7.0) and 100 mM NaCl.

Abbreviation	Abbreviation		upper: 1 nM
of siRNA	of ssRNA	sequence "	lower: 0.1 nM
Control	Buffer	-	100 ± 6.1
		Sense (Passenger) strand	
-: DNA 1	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	21.1 ± 2.5
SIKINA I	RNA 8	3'-UUCCGGAAAGUGAUGAGGAUG-5'	59.0 ± 1.4
		Antiense (Guide) strand	
	RNA 2	5'-GGCCUUUCACUACUCCUACUU-3'	19.4 ± 2.0
siRNA 2	RNA 8	3'-UUCCGGAAAGUGAUGAGGAUG-5'	56.1 ± 1.5
siRNA 3	RNA 3	5'-GGCCUUUCACUACUCCUA <mark>CUU</mark> -3'	16.9 ± 1.7
	RNA 8	3'-UUCCGGAAAGUGAUGAGGAUG-5'	58.7 ± 3.1
siRNA 4	RNA 4	5'-GGCCUUUCACUACUCCUACUU-3'	20.0 ± 0.79
	RNA 8	3'-UUCCGGAAAGUGAUGAGGAUG-5'	58.1 ± 5.3
	RNA 5	5'-GGCCUUUCACUACUC <mark>CUA</mark> CUU-3'	60.4 ± 4.0
siRNA 5	RNA 8	3'-UUCCGGAAAGUGAUGAGGAUG-5'	28.5 ± 1.7
	RNA 6	5'-GGCCUUUCACUACUCCUACUU-3'	20.8 ± 2.5
SIKNA 6	RNA 8	3'-UUCCGGAAAGUGAUGAGGAUG-5'	56.4 ± 2.8
	RNA 7	5'-GGCCUUUCACUACUCCUACUU-3'	21.6 ± 2.5
sikna /	RNA 8	3'-UUCCGGAAAGUGAUGAGGAUG-5'	57.9 ± 4.0

Table S1. Sequences of siRNAs 1–7 and their ability to suppress gene expression.

Abbreviation	Abbreviation		upper: 1 nM
of siRNA	of ssRNA	sequence "	lower: 0.1 nM
Control	Buffer	-	100 ± 12.7
		Sense (Passenger) strand	
CDNA 1	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	21.8 ± 5.6
SIKINA I	RNA 8	3'-UUCCGGAAAGUGAUGAGGAUG-5'	62.5 ± 1.6
		Antiense (Guide) strand	
	RNA 9	5'-GGCCUUUCACUACUCCUACUU-3'	27.5 ± 3.7
SIRNA 8	RNA 8	3'-UUCCGGAAAGUGAUGAGGAUG-5'	65.8 ± 3.6
siRNA 9	RNA 10	5'-GGCCUUUCACUACUCCUACUU-3'	63.1 ± 6.4
	RNA 8	3'-UUCCGGAAAGUGAUGAGGAUG-5'	90.3 ± 5.0
siRNA 10	RNA 11	5'-GGCCUUUCACUACUCCUACUU-3'	32.6 ± 2.3
	RNA 8	3'-UUCCGGAAAGUGAUGAGGAUG-5'	78.8 ± 6.8
-:DNIA 11	RNA 12	5'-GGCCUUUCACUACUCCUACUU-3'	91.4 ± 6.5
siRNA 11	RNA 8	3'-UUCCGGAAAGUGAUGAGGAUG-5'	46.9 ± 1.5
siRNA 12	RNA 13	5'-GGCCUUUCACUACUCCUACUU-3'	22.2 ± 2.5
	RNA 8	3'-UUCCGGAAAGUGAUGAGGAUG-5'	65.0 ± 1.5
a:DNIA 12	RNA 14	5'-GGCCUUUCACUACUCCUACUU-3'	18.5 ±1.1
sikna 13	RNA 8	3'-UUCCGGAAAGUGAUGAGGAUG-5'	73.8 ± 3.8

Table S2. Sequences of siRNAs 1, 8–13 and their ability to suppress gene expression.

Abbreviation	Abbreviation		upper: 1 nM
of siRNA	of ssRNA	sequence "	lower: 0.1 nM
Control	Buffer	-	100 ± 2.8
		Sense (Passenger) strand	
siRNA 1	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	21.1 ± 1.6
	RNA 8	3'-UUCCGGAAAGUGAUGAGGAUG-5'	59.9 ± 3.7
		Antiense (Guide) strand	
siRNA 14	RNA 15	5'-GGCCUUUCACUACUCCUACUU-3'	15.5 ± 1.4
	RNA 8	3'-UUCCGGAAAGUGAUGAGGAUG-5'	47.0 ± 2.3
siRNA 15	RNA 16	5'-GGCCUUUCACUACUCCUACUU-3'	17.2 ± 1.3
	RNA 8	3'-UUCCGGAAAGUGAUGAGGAUG-5'	48.5 ± 5.0

Table S3. Sequences of siRNAs 1, 14, 15 and their ability to suppress gene expression.

Abbreviation	Abbreviation		upper: 10 nM
of siRNA	of ssRNA	sequence "	lower: 1 nM
Control	Buffer	-	100 ± 9.5
		Sense (Passenger) strand	
"DNIA 1	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	11.8 ± 0.86
SIKINA I	RNA 8	3'-UUCCGGAAAGUGAUGAGGAUG-5'	24.7 ± 2.3
		Antiense (Guide) strand	
-:DNA 16	RNA 17	5'-GGCCUUUCACUACUCCUACUU-3'	9.7 ± 0.53
SIKINA 10	RNA 8	3'-UUCCGGAAAGUGAUGAGGAUG-5'	24.9 ± 1.2
siRNA 17	RNA 18	5'-GGCCUUUCACUACUCCUACUU-3'	11.1 ± 0.34
	RNA 8	3'-UUCCGGAAAGUGAUGAGGAUG-5'	31.0 ± 0.90
siRNA 18	RNA 19	5'-GGCCUUUCACUACUCCUACUU-3'	14.0 ± 1.5
	RNA 8	3'-UUCCGGAAAGUGAUGAGGAUG-5'	26.1 ± 0.62
-:DNIA 10	RNA 20	5'-GGCCUUUCACUACUCCUACUU-3'	34.3 ± 3.1
sirna 19	RNA 8	3'-UUCCGGAAAGUGAUGAGGAUG-5'	17.6 ± 2.5
-:DNIA 20	RNA 21	5'-GGCCUUUCACUACUCCUACUU-3'	9.7 ± 0.59
sikna 20	RNA 8	3'-UUCCGGAAAGUGAUGAGGAUG-5'	22.7 ± 0.68
CINIA 21	RNA 22	5'-GGCCUUUCACUACUCCUACUU-3'	23.9 ± 1.2
sikna 21	RNA 8	3'-UUCCGGAAAGUGAUGAGGAUG-5'	54.3 ± 2.4

Table S4. Sequences of siRNAs 1, 16–21 and their ability to suppress gene expression.

Abbreviation	Abbreviation	a	upper: 10 nM
of siRNA	of ssRNA	sequence "	lower: 1 nM
Control	Buffer	-	100 ± 6.0
		Sense (Passenger) strand	
DNA 1	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	25.7 ± 2.5
SIKINA I	RNA 8	3'-UUCCGGAAAGUGAUGAGGAUG-5'	37.9 ± 1.3
		Antiense (Guide) strand	
	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	57.7 ± 0.98
SIKINA 22	RNA 23	3'-UUCCGGAAAGUGAUGAGGAUG-5'	93.6 ± 7.3
DNIA 22	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	99.1 ± 3.9
SIRINA 25	RNA 24	3'-UUCCGGAAAGUGAUGAGGAU <mark>G</mark> -5'	95.3 ± 5.4
siRNA 24	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	54.1 ± 1.9
	RNA 25	3'-UUCCGGAAAGUGAUGAGGAUG-5'	83.3 ± 4.7
siRNA 25	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	86.7 ± 4.6
	RNA 26	3'-UUCCGGAAAGUGAUGAGGA <mark>U</mark> G-5'	96.7 ± 3.3
	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	23.7 ± 2.0
SIKNA 26	RNA 27	3'-UUCCGGAAAGUGAUGAGGAUG-5'	38.7 ± 3.0
	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	64.3 ± 6.6
s1RNA 27	RNA 28	3'-UUCCGGAAAGUGAUGAGGAUG-5'	82.0 ± 0.90
	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	22.9 ± 1.4
siRNA 28	RNA 29	3'-UUCCGGAAAGUGAUGAG <mark>G</mark> AUG-5'	43.9 ± 3.2
	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	47.5 ± 0.90
sikna 29	RNA 30	3'-UUCCGGAAAGUGAUGAG <mark>G</mark> AUG-5'	68.1 ± 5.1

Table S5. Sequences of siRNAs 1, 22–29 and their ability to suppress gene expression.

Abbreviation	Abbreviation		upper: 10 nM
of siRNA	of ssRNA	sequence "	lower: 1 nM
Control	Buffer	-	100 ± 7.9
		Sense (Passenger) strand	
'D \ [4 1	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	17.3 ± 1.0
SIKNA I	RNA 8	3'-UUCCGGAAAGUGAUGAGGAUG-5'	41.3 ± 3.8
		Antiense (Guide) strand	
	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	18.1 ± 1.3
SIKNA 30	RNA 31	3'-UUCCGGAAAGUGAUGA <mark>G</mark> GAUG-5'	30.3 ± 0.64
-:DNIA 21	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	43.6 ± 3.5
SIKNA 31	RNA 32	3'-UUCCGGAAAGUGAUGA <mark>G</mark> GAUG-5'	60.2 ± 6.3
-:DNIA 22	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	20.6 ± 1.2
SIKNA 32	RNA 33	3'-UUCCGGAAAGUGAUGAGGAUG-5'	33.4 ± 2.8
siRNA 33	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	34.5 ± 3.4
	RNA 34	3'-UUCCGGAAAGUGAUGAGGAUG-5'	64.1 ± 1.2
-:DNIA 24	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	23.9 ± 1.5
SIKINA 54	RNA 35	3'-UUCCGGAAAGUGAUGAGGAUG-5'	43.7 ± 2.4
-:DNIA 25	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	23.9 ± 1.0
SIKINA 55	RNA 36	3'-UUCCGGAAAGUGAU <mark>G</mark> AGGAUG-5'	39.8 ± 1.4
siRNA 36	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	23.8 ± 1.9
	RNA 37	3'-UUCCGGAAAGUGAUGAGGAUG-5'	44.4 ± 2.6
CDNA 27	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	38.1 ± 2.4
s1KNA 37	RNA 38	3'-UUCCGGAAAGUGA <mark>U</mark> GAGGAUG-5'	60.8 ± 3.8

Table S6. Sequences of siRNAs 1, 30–37 and their ability to suppress gene expression.

Abbreviation of	Abbreviation of	Passenger strand (5'-3') ^{<i>a</i>}	T (°C) b	AT (°C) c
siRNA	ssRNA	Guide strand (3'-5')	$I_{\rm m}$ (C) °	$\Delta I_{\rm m}$ (°C) °
siRNA 1	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	78.0	-
	RNA 8	3'-UUCCGGAAAGUGAUGAGGAUG-5'	/8.0	
~:DNIA 22	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	78.0	-
SIKINA 22	RNA 23	3'-UUCCGGAAAGUGAUGAGGAUG-5'	/8.0	
	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	0 רר	-0.2
SIKINA 23	RNA 24	3'-UUCCGGAAAGUGAUGAGGAU <mark>G</mark> -5'	//.8	
siRNA 24	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'		-
	RNA 25	3'-UUCCGGAAAGUGAUGAGGAUG-5'	//./	
siRNA 25	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	78.0	0.3
	RNA 26	3'-UUCCGGAAAGUGAUGAGGA <mark>U</mark> G-5'	/8.0	
siRNA 26	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	70.1	
	RNA 27	3'-UUCCGGAAAGUGAUGAGGAUG-5'	/8.1	-
siRNA 27	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	78.0	0.1
	RNA 28	3'-UUCCGGAAAGUGAUGAGG <mark>A</mark> UG-5'	/8.0	-0.1

Table S7. Sequences of ssRNAs, siRNAs, and $T_{\rm m}$ values of siRNAs.

^{*a*}Blue and red letters denote 2'-O-methylnucleosides and (S)-5'-C-aminopropyl-2'-O-methylnucleosides, respectively.

^bThe T_m values were determined using 3 µM dsRNA in a buffer containing 10 mM sodium phosphate (pH of 7.0) and 100 mM NaCl.

^{*c*} $\Delta T_{\rm m}$ represents $[T_{\rm m} ({\rm siRNA}_{(S)-5'-C-{\rm aminopropyl-2'-O-methyl}}) - T_{\rm m} ({\rm siRNA}_{2'-O-{\rm methyl}})].$

Abbreviation of	Abbreviation of	Passenger strand (5'-3') ^{<i>a</i>}	T (°C) b	AT (°C) c
siRNA	ssRNA	Guide strand (3'-5')	$I_{\rm m}$ (C) °	$\Delta I_{\rm m}$ (C) °
CINIA 29	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	70.2	-
SININA 20	RNA 29	3'-UUCCGGAAAGUGAUGAGGAUG-5'	/0.3	
TINA 20	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	ר רר	-0.6
SIKINA 29	RNA 30	3'-UUCCGGAAAGUGAUGAG <mark>G</mark> AUG-5'	//./	
'DNL 20	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'		-
SIKINA 30	RNA 31	3'-UUCCGGAAAGUGAUGAGGAUG-5'	//./	
CDNA 21	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	77 5	-0.2
SIKINA 31	RNA 32	3'-UUCCGGAAAGUGAUGA <mark>G</mark> GAUG-5'	11.5	
~:DNIA 22	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	77 4	
\$1KNA 32	RNA 33	3'-UUCCGGAAAGUGAUGAGGAUG-5'	//.4	-
siRNA 33	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	77 (0.2
	RNA 34	3'-UUCCGGAAAGUGAUGAGGAUG-5'	//.0	0.2

Table S8. Sequences of ssRNAs, siRNAs, and $T_{\rm m}$ values of siRNAs.

^{*a*}Blue and red letters denote 2'-O-methylnucleosides and (S)-5'-C-aminopropyl-2'-O-methylnucleosides, respectively.

^{*b*}The $T_{\rm m}$ values were determined using 3 μ M dsRNA in a buffer containing 10 mM sodium phosphate (pH of 7.0) and 100 mM NaCl. ^{*c*} $\Delta T_{\rm m}$ represents [$T_{\rm m}$ (siRNA_{(S)-5'-C-aminopropyl-2'-O-methyl}) – $T_{\rm m}$ (siRNA_{2'-O-methyl})].

Abbreviation of	Abbreviation of	Passenger strand (5'-3') ^{<i>a</i>}	$T_{\rm m}$ (°C) ^b	$\Delta T_{\rm m}$ (°C) ^c
siRNA	ssRNA	Guide strand (3'-5')		
GDNA 24	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	77.0	-
SININA 54	RNA 35	3'-UUCCGGAAAGUGAUGAGGAUG-5'	11.9	
GDNA 25	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	79 /	0.5
SIKINA 33	RNA 36	3'-UUCCGGAAAGUGAU <mark>G</mark> AGGAUG-5'	/ 8.4	
siRNA 36	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	9 רד	-
	RNA 37	3'-UUCCGGAAAGUGAUGAGGAUG-5'	//.8	
siRNA 37	RNA 1	5'-GGCCUUUCACUACUCCUACUU-3'	27.2	0.5
	RNA 38	3'-UUCCGGAAAGUGA <mark>U</mark> GAGGAUG-5'	//.3	-0.5

Table S9. Sequences of ssRNAs, siRNAs, and T_m values of siRNAs.

^{*a*}Blue and red letters denote 2'-O-methylnucleosides and (S)-5'-C-aminopropyl-2'-O-methylnucleosides, respectively.

^bThe T_m values were determined using 3 µM dsRNA in a buffer containing 10 mM sodium phosphate (pH of 7.0) and 100 mM NaCl.

^{*c*} $\Delta T_{\rm m}$ represents $[T_{\rm m} ({\rm siRNA}_{(S)-5'-C-{\rm aminopropyl-2'-O-methyl}}) - T_{\rm m} ({\rm siRNA}_{2'-O-{\rm methyl}})].$

Figure S5. UV melting profiles of the unmodified and modified siRNAs in a buffer containing 10 mM sodium phosphate (pH 7.0) and 100 mM NaCl.

Figure S6. UV melting profiles of the unmodified and modified siRNAs in a buffer containing 10 mM sodium phosphate (pH 7.0) and 100 mM NaCl.

Figure S7. UV melting profiles of the unmodified and modified siRNAs in a buffer containing 10 mM sodium phosphate (pH 7.0) and 100 mM NaCl.

Figure S8. Models of the complex of Argonaute-2 and guide strand positions 6–8 of siRNA based on the crystal structure with a guide and passenger strand duplex (PDB ID code: 4W5O)¹. (A) unmodified siRNA, (B) modeling structure obtained on substitution with (*S*)-5'-*C*-aminopropyl-2'-*O*-methyl modification at guide strand position 7. As shown, the guide strand position 7 colored yellow (A) and green (B).

(B)

Molecular Modeling Method

The model of the complex between human Argonaute-2 and the seed region pairing of an siRNA were retrieved from the Protein Data Bank (ID code: 4W5O)¹. The missing loops in the crystal structure of human Argonaute-2 and an siRNA were built with the MOE (Molecular Operating Environment) program using the "Loop modeler." Subsequently, the (*S*)-5-*C*-aminopropyl-2-*O*-methyl modification was built with the MOE program using the structure-editing tool "Builder." All modeling structures were energy-minimized by MOE using the Amber 14 force field.

Reference.

 N. T. Schirle, J. Sheu-Gruttadauria, I. J. MacRae. Structural basis for microRNA targeting. *Science*, 2014, **346**, 608–613.

NMR spectra (¹H, ¹³C, ³¹P and NOESY)

¹H NMR spectrum of compound 6

 $^{13}C{^{1}H}NMR$ spectrum of compound 6

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}\mathrm{NMR}$ spectrum of compound 7

S19

^{1}H NMR spectrum of compound **8**

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}\mathrm{NMR}$ spectrum of compound $\boldsymbol{8}$

 $^{13}C{^{1}H}NMR$ spectrum of compound 9

 ^{1}H NMR spectrum of compound 10

 $^{13}C\{^{1}H\}NMR$ spectrum of compound 10

S22

¹H NMR spectrum of compound **11**

 $^{13}C\{^{1}H\}NMR$ spectrum of compound 11

¹H NMR spectrum of compound **12** (β -anomer)

 $^{13}C{^{1}H}NMR$ spectrum of compound **12** (β -anomer)

 ^{1}H NMR spectrum of compound **13**

 $^{13}C\{^{1}H\}NMR$ spectrum of compound 13

S25

¹HNMR spectrum of compound **14**

 $^{13}C\{^{1}H\}NMR$ spectrum of compound 14

 $^{13}C{^{1}H}NMR$ spectrum of compound 15

 $^{13}C{^{1}H}NMR$ spectrum of compound 16

¹H NMR spectrum of compound **17**

 $^{13}C{^{1}H}NMR$ spectrum of compound 17

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}\mathrm{NMR}$ spectrum of compound $\mathbf{18}$

 $^{113}C{^{1}H}NMR$ spectrum of compound **19**

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}\mathrm{NMR}$ spectrum of compound $\mathbf{20}$

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}\mathrm{NMR}$ spectrum of compound $\boldsymbol{21}$

³¹P NMR spectrum of compound **22**

 $^{13}C\{^{1}H\}NMR$ spectrum of compound ${\bf 23}$

¹H NMR spectrum of compound **24**

 $^{13}C\{^{1}H\}NMR$ spectrum of compound $\bf 24$

 $^{113}C\{^{1}H\}NMR$ spectrum of compound $\mathbf{25}$

 $^{13}C\{^{1}H\}NMR$ spectrum of compound 26

¹H NMR spectrum of compound **27**

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}\mathrm{NMR}$ spectrum of compound 27

 $^{13}C\{^{1}H\}NMR$ spectrum of compound ${\bf 28}$

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}\mathrm{NMR}$ spectrum of compound $\mathbf{29}$

¹H NMR spectrum of compound **30**

 $^{13}C\{^{1}H\}NMR$ spectrum of compound ${\bf 30}$

¹H NMR spectrum of compound **31**

 $^{13}C\{^{1}H\}NMR$ spectrum of compound $\boldsymbol{31}$

 ^{1}H NMR spectrum of compound **32**

 $^{13}C\{^{1}H\}NMR$ spectrum of compound $\boldsymbol{32}$

³¹P NMR spectrum of compound **33**

 $^{13}C{^{1}H}NMR$ spectrum of compound 34

NOESY spectrum of compound 34

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}\mathrm{NMR}$ spectrum of compound $\mathbf{35}$

NOESY spectrum of compound 35

