Electronic Supporting Information (ESI)

Development of new 2-piperidinium-4-styrylcoumarin derivatives with large Stokes shifts as potential fluorescent labels for biomolecules

Raquel Eustáquio,^a João P. Prates Ramalho,^{b,c} Ana T. Caldeira,^{a,b} António Pereira^{a,b*}

^a HERCULES Laboratory and City University of Macau Chair in Sustainable Heritage, University of Évora, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal.

^b Chemistry Department, School of Sciences and Technology, University of Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal.

^c LAQV-REQUIMTE, University of Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal.

* Corresponding author.

E-mail address: amlp@uevora.pt

Contents:

1	NMR spectra	S2
2	Mass spectra	S9
3	UV/Vis spectra	S13
4	Quantum chemical calculations	.S14

¹³C-NMR spectrum of **4** (CDCl₃, 100 MHz)

¹³C-NMR spectrum of **7** (CDCl₃, 100 MHz)

¹³C-NMR spectrum of **8** (CD₃OD, 100 MHz)

¹³C-NMR spectrum of **9** (CDCl₃, 100 MHz)

2 Mass spectra

Mass spectrum of 3

Mass spectrum of 4

Mass spectrum of 6

Mass spectrum of 7

Mass spectrum of 8

Mass spectrum of 9

3 UV/Vis spectra

UV/Vis spectra of 3 to 9

4 Quantum chemical calculations

Figure S1. Numbering scheme adopted common to all compounds.

Table S1. Selected bond distances (Å)	and dihedral angle (°) of the compounds
in the ground S_0 and excited S_1 states.	

	r[C10	-C30]	r[C30-C48]		r[C48-C50]		D _h [C3-C10-C30-C48]	
Compound	S ₀	S ₁	S ₀	S ₁	S ₀	S ₁	So	S ₁
4	1.456	1.408	1.349	1.384	1.459	1.431	25.5	2.1
5	1.454	1.408	1.350	1.381	1.457	1.439	23.9	3.1
6	1.440	1.430	1.360	1.378	1.438	1.438	14.5	6.8
7	1.449	1.407	1.353	1.383	1.450	1.436	20.9	5.1
9	1.449	1.408	1.353	1.383	1.449	1.436	19.9	3.6

Figure S2. Optimized structures of the compounds in the ground S_0 and excited S_1 states.

Compound 4				
State	λ (nm)	f	Major MO \rightarrow MO transitions	
S ₁	494	0.534	HOMO->LUMO (99%)	
S ₂	389	1.377	H-1->LUMO (99%)	
S ₃	333	0.087	H-2->LUMO (94%)	
S ₄	324	0.271	HOMO->L+1 (94%)	
S ₅	304	0.041	H-3->LUMO (93%)	

Table S2. Calculated absorption data for the compounds and the main orbitals involved in the transitions.

Compound 5

-			
State	λ (nm)	f	Major $MO \rightarrow MO$ transitions
S ₁	473	0.618	HOMO->LUMO (99%)
S ₂	391	1.163	H-1->LUMO (99%)
S ₃	324	0.057	H-2->LUMO (95%)
S_4	304	0.026	H-3->LUMO (95%)
S₅	300	0.196	HOMO->L+1 (89%)

Compound 6

State	λ (nm)	f	Major $MO \rightarrow MO$ transitions
S ₁	526	1.535	HOMO->LUMO (98%)
S ₂	457	0.518	H-1->LUMO (98%)
S ₃	324	0.072	H-3->LUMO (11%), H-2->LUMO (82%)
S_4	309	0.113	H-3->LUMO (29%), HOMO->L+1 (56%)
S5	305	0.036	H-3->LUMO (48%), H-2->LUMO (15%), H->L+1 (17%)

Compound 7

State	λ (nm)	f	Major MO \rightarrow MO transitions
S1	468	0.714	HOMO->LUMO (98%)
S ₂	429	1.141	H-1->LUMO (98%)
S ₃	322	0.047	H-2->LUMO (93%)
S_4	296	0.150	HOMO->L+1 (83%), HOMO->L+2 (10%)
S ₅	292	0.012	H-3->LUMO (85%)

Compound 9

State	λ (nm)	f	Major MO \rightarrow MO transitions
S ₁	467	0.772	HOMO->LUMO (97%)
S ₂	435	1.166	H-1->LUMO (97%)
S ₃	322	0.049	H-2->LUMO (92%)
S_4	296	0.093	H-3->LUMO (16%), HOMO->L+1 (68%)
S ₅	294	0.051	H-3->LUMO (66%), HOMO->L+1 (14%)

Compoud	λ (nm)	f	Major $MO \rightarrow MO$ transitions
4	578	0.450	HOMO->LUMO (99%)
5	539	0.530	HOMO->LUMO (99%)
6	558	1.655	HOMO->LUMO (99%)
7	525	0.647	HOMO->LUMO (99%)
9	523	0.702	HOMO->LUMO (99%)

Table S3. Calculated emission data for the studied compounds and the main orbitals involved in the $S_1 {\rightarrow} S_0$ transitions.