Supplemental Information

One-pot Synthesis of 2-Bromopropionyl Esterified Cellulose Nanofibrils

as Hydrophobic Coating and Film

Mengzhe Guo and You-Lo Hsieh

Biological and Agricultural Engineering, Chemical Engineering, University of California at Davis,

Davis, California 95616-8722, United States.

Email: ylhsieh@ucdavis.edu; Tel: +1 530 752 084

Fig. S1 Optical images of (a) cellulose, (b) Br-Cell1, (c) Br-Cell3 and (d) Br-Cell4 at 0.1 w/v% in DMF.

Fig. S2 AFM images with height profiles of NCs at (0.001 w/v % in DMF) from unmodified cellulose supernatant after ultrasonication (50% amplitude, 30 min) and centrifugation (5k rpm, 10 min) on: (a) mica; (b) graphite.

Fig.S3 Effect of ultrasonication amplitude (60 min) on Br-NCs in the supernatant (centrifugation 5000 rpm, 10 min) from Br-Cell2 (3.4 mmol/g), Br-Cell3 (5.7 mmol/g), and Br-Cell4 (8.7 mmol/g).

Fig. S4 AFM images and height profiles of Br-CNF3 (on graphite) from varied concentrations and time: (a) 0.00005%, 6h; (b) 0.0001%, 6h; (c) 0.0005%, 6h; (d) 0.0005%, 24h.

Fig. S5 AFM images and corresponding height profiles of Br-CNF3 (10 uL, 0.0005 w/v%) on graphite: (a) single droplet (air-dried, 3 h); (b-d) two sequential depositions (air-dried, 3 h for each), showing center of droplet in b, area between center and edge in c, and near edge of droplet in c.

Fig. S6 Deconvolution (VoigtA fitting method) of cellulose XRD spectra with (1-10), (110) and (200) planes at corresponding 2θ of 14.6, 16.5 and 22.5°.

Fig. S7 Engineering stress-strain curves for blade coating CNF films.