Supplementary Data

Tuning composition of CuCo₂S₄-NiCo₂S₄ solid solutions via solventless pyrolysis of molecular precursors for efficient supercapacitance and water splitting

Ginena Bildard Shombe,^{1,2} Malik Dilshad Khan,^{1,3*} Jonghyun Choi,⁴ Ram K. Gupta,⁴ Marcin Opallo,³ and Neerish Revaprasadu^{1*}

¹Department of Chemistry, University of Zululand, Private Bag X1001, KwaDlangezwa 3880, South Africa.

²Chemistry Department, University of Dar-es-salaam, P.O Box 35091, Dar-es-salaam, Tanzania. ³Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.

⁴Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762, USA.

Figure S1. TGA curves of nickel ethyl xanthate (1), copper ethyl xanthate (2), and cobalt ethyl xanthate (3).

Figure S2. The extended portion of the diffraction patterns of $Ni_{(1-x)}Cu_xCo_2S_4$ (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) showing the shift in peak positions.

Figure S3. SEM images of $Ni_{(1-x)}Cu_xCo_2S_4$ (x = 0, 0.2, 0.4, 0.6, 0.8 and 1) nanoparticles taken at 10.00 KX.

Figure S4. TEM images of Ni_(1-x)Cu_xCo₂S₄ nanoparticles synthesized at x = 0 (a), x = 0.2 (b), x = 0.4 (c), x = 0.6 (d), x = 0.8 (e) and x = 1 (f).

Figure S5. EDX spectra of $Ni_{(1-x)}Cu_xCo_2S_4$ synthesized at x = 0 (a), x = 0.2 (b), x = 0.4 (c), x = 0.6 (d), x = 0.8 (e), and x = 1 (f).

Copper	Theoretical Composition (Atomic %)			Experimental composition (Atomic %)				
mole								
fraction (x)	Ni	Co	Cu	S	Ni	Со	Cu	S
0	14.29	28.57	0	57.14	17.61	28.64	0	53.75
0.2	11.43	28.57	2.86	57.14	12.05	28.96	3.04	55.95
0.4	8.57	28.57	5.71	57.14	9.13	29.56	6.44	54.87
0.6	5.71	28.57	8.57	57.14	5.84	29.63	8.67	55.86
0.8	2.86	28.57	11.43	57.14	3.62	28.20	12.4	55.78
1	0	28.57	14.29	57.14	0	30.92	11.6	57.48

Table S1. Theoretical and experimental atomic percentage compositions of $Ni_{(1-x)}Cu_xCo_2S_4$ (*x* = 0, 0.2, 0.4, 0.6, 0.8 and 1).

Figure S6. Cyclic voltammograms of (a) NCS, (b) NCCS-1, (c) NCCS-3, (d) NCCS-4, and (e) CCS in KOH at various scan rates of 2-300 mV/s.

Figure S7. GCD curves of NCS, NCCS-1, NCCS-3, NCCS-4, and CCS at various current densities of 1-30 A/g in KOH.

		Specific	Current	
Electrode material	Electrolyte	capacitance	density	Reference
		(F/g)	(A/g)	
β-NiS	3 М КОН	501.5	0.6	[1]
NiCo ₂ S ₄	3 М КОН	1298	1	[2]
NiCo ₂ S ₄ nanoplates	3 М КОН	437	1	[3]
NiCo ₂ S ₄ @PPy	5 M KOH	1606.6	1	[4]
Activated carbon@ NiCo ₂ S ₄	3 М КОН	651.1	0.6	[5]
Cu-doped				
NiCo ₂ S ₄ /graphite	2 M KOH	3080	1	[6]
NiCo ₂ S ₄ @MnO ₂	3 М КОН	520.7	1	[7]
NiCo ₂ S ₄ /Co ₉ S ₈	3 M KOH	2180	1	[8]
NiCo ₂ S ₄ @NiMoO ₄	6 M KOH	1487.6	1	[9]
CuCo ₂ S ₄	2 M KOH	515	1	[10]
CoMoO ₄ @ CuCo ₂ S ₄	3 M KOH	1414	1	[11]
CuCo ₂ S ₄ /polyacrylonitrile	6 M KOH	385	1	[12]
CuCo ₂ S ₄ /CNTs	2 M KOH	557.5	1	[13]
CuCo ₂ S ₄ @LDH	6 M KOH	1876	1	[14]
CuCo ₂ S ₄	2 M KOH	373.4	1	[13]
CuCo ₂ S ₄ /RGO	3 M KOH	525	1	[15]
CuCo ₂ S ₄	2 M KOH	424	1	[16]
NCS	3 M KOH	838	1	This work
NCCS-2	3 М КОН	770	1	This work

Table S2. A comparison of the specific capacitance of the NCS and NCCS-2 electrodes with some previously reported nickel and cobalt sulfide-based materials electrode materials.

Name	Electrolyte	Tafel slope (mV/dec)	Overpotential (mV) @10 mA/cm ²	Reference
Ni ₃ S ₂	1 M KOH	87	230 mV	[17]
NiS ₂ /rGO	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	52	200	[18]
Co_9S_8 -Ni _x S _y	1 M KOH	88	163 mV	[17]
CoS ₂ /RGO-CNT	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	51	142 mV	[19]
Ni-Co-S	1 M phosphate solutions	70	280 mV	[20]
CoNi ₂ S ₄ nanorod	1 M KOH	53	111	[21]
CuCo ₂ S ₄ /NiCo ₂ S ₄	1 M KOH	90	206	[22]
FeO@CuCo ₂ S ₄	1 M KOH	136	107	[23]
NiCo ₂ S ₄ nanowires	1 M KOH	37	41	[24]
NiCo ₂ S ₄ @NCNF	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	-	117	[25]
NiCo ₂ S ₄ @NiCoP	1 M KOH	53	108	[26]
NiCo ₂ S ₄	1 М КОН	-	282 mV	[27]
$CoNi_2S_4$	1 М КОН	85	255	[28]
CuCo ₂ S ₄	0.5 M H ₂ SO ₄	140	363 mV	[29]
NCCS-3	1 M KOH	150	124 mV	This work

 Table S3. Comparison of NCCS-3 HER parameters electrode with other nickel and cobalt sulfide-based materials

Figure S8. 1st and 1k cycle HER polarization curves for NCS, NCCS-1, NCCS-2, NCCS-4, and CCS in KOH.

Figure S9. Nyquist plot of NCS, NCCS-2, NCCS-3, NCCS-4, and CCS at various potential (vs SCE) in KOH.

Figure S10. 1st and 1k cycle OER polarization curves for NCS, NCCS-2, NCCS-3, NCCS-4, and CCS in KOH.

Name	Electrolyte	Tafel slope (mV/dec)	Overpotential (mV) @10 mA/cm ²	Reference
NiS _X	1 M KOH	56	408 mV	[30]
Ni ₃ S ₂ NWs/Ni	1 M KOH	84.8	317	[31]
Co-S nanosheets	1 M KOH	64	361 mV	[32]
Co ₉ S ₈ -CuS-FeS	1 M KOH	79	300 mV	[33]
NiCoS	1 M KOH	73.7	$\sim 410 \ mV$	[34]
NiCo ₂ S ₄	1 M KOH	72	309	[35]
NiCoS/Ti ₃ C ₂ T _x	1 M KOH	58	365 mV	[34]
NiCo ₂ S ₄ NN/CC	1 M KOH	84	316	[36]
NiCo ₂ S ₄ sphere	0.1 M KOH	65	> 500 mV	[37]
MoS ₂ /NiCo ₂ S ₄ /NF	1 M KOH	52	220	[38]
Fe-doped α -NiS	1 M KOH	79	266	[39]
$CuCo_2S_4/g$ - C_3N_4	1 M KOH		242	[40]
CuCo ₂ S ₄	1 M KOH	86	310 mV	[41]
CuCo ₂ S ₄	1 M KOH	115	395	[42]
NCCS-1	1 M KOH	47	268 mV	This work

Table S4. Comparison of OER parameters NCCS-1 with other nickel and cobalt sulfide-based materials.

References

- [1] C. Wei, C. Cheng, J. Zhao, Y. Wang, Y. Cheng, Y. Xu, W. Du, H. Pang, *Chemistry–An Asian Journal* **2015**, *10*, 679-686.
- [2] G. Xiang, Y. Meng, G. Qu, J. Yin, B. Teng, Q. Wei, X. Xu, *Science Bulletin* **2020**, *65*, 443-451.
- [3] J. Pu, F. Cui, S. Chu, T. Wang, E. Sheng, Z. Wang, ACS Sustainable Chemistry & Engineering 2014, 2, 809-815.
- [4] T. Yi, S. Qi, Y. Li, L. Qiu, Y. Liu, Y. Zhu, J. Zhang, Y. Li, *Energy Technology* **2020**, *8*, 2000096.
- [5] T. Wang, Q. Le, G. Zhang, S. Zhu, B. Guan, J. Zhang, S. Xing, Y. Zhang, *Electrochimica Acta* 2016, 211, 627-635.
- [6] M. Zhang, H. Zheng, H. Zhu, M. Zhang, R. Liu, X. Zhu, X. Li, H. Cui, *Journal of Alloys* and Compounds **2022**, 163633.
- [7] H. Chen, X. L. Liu, J. M. Zhang, F. Dong, Y. X. Zhang, *Ceramics International* 2016, 42, 8909-8914.
- [8] X. Han, Q. Chen, H. Zhang, Y. Ni, L. Zhang, *Chemical Engineering Journal* **2019**, *368*, 513-524.
- [9] S. Chen, Z. Zhang, W. Zeng, J. Chen, L. Deng, *ChemElectroChem* **2019**, *6*, 590-597.
- [10] S. Guo, W. Chen, M. Li, J. Wang, F. Liu, J. Cheng, *Electrochimica Acta* 2018, 271, 498-506.
- [11] T. Xie, J. Xu, J. Wang, C. Xuan, C. Ma, L. Su, F. Dong, L. Gong, *Energy & Fuels* 2020, 34, 16791-16799.
- [12] L. Chen, Y. Zuo, Y. Zhang, Y. Gao, *Materials Letters* **2018**, *215*, 268-271.
- [13] H. Li, Z. Li, Z. Wu, M. Sun, S. Han, C. Cai, W. Shen, X. Liu, Y. Fu, *Journal of colloid* and interface science **2019**, 549, 105-113.
- [14] H.-B. Li, G.-F. Xiao, H.-Y. Zeng, X.-J. Cao, K.-M. Zou, S. Xu, *Electrochimica Acta* 2020, 352, 136500.
- [15] K. Annamalai, Y.-s. Tao, *New Carbon Materials* **2016**, *31*, 336-342.
- [16] J. Cheng, S. Gao, P. Zhang, B. Wang, X. Wang, F. Liu, Journal of Alloys and Compounds 2020, 825, 153984.
- [17] D. Ansovini, C. J. J. Lee, C. S. Chua, L. T. Ong, H. R. Tan, W. R. Webb, R. Raja, Y.-F. Lim, *Journal of Materials Chemistry A* **2016**, *4*, 9744-9749.
- [18] R. Chen, Y. Song, Z. Wang, Y. Gao, Y. Sheng, Z. Shu, J. Zhang, X. a. Li, *Catalysis Communications* 2016, 85, 26-29.
- [19] S. Peng, L. Li, X. Han, W. Sun, M. Srinivasan, S. G. Mhaisalkar, F. Cheng, Q. Yan, J. Chen, S. Ramakrishna, *Angewandte Chemie* 2014, *126*, 12802-12807.
- [20] A. Irshad, N. Munichandraiah, ACS applied materials & interfaces 2017, 9, 19746-19755.
- [21] Y. Ge, J. Wu, X. Xu, M. Ye, J. Shen, International Journal of Hydrogen Energy 2016, 41, 19847-19854.
- [22] L. Ma, J. Liang, T. Chen, Y. Liu, S. Li, G. Fang, *Electrochimica Acta* 2019, 326, 135002.
- [23] A. T. A. Ahmed, A. S. Ansari, S. Pawar, B. Shong, H. Kim, H. Im, *Applied Surface Science* **2021**, *539*, 148229.

- [24] Y. Wu, X. Liu, D. Han, X. Song, L. Shi, Y. Song, S. Niu, Y. Xie, J. Cai, S. Wu, *Nature communications* **2018**, *9*, 1-9.
- [25] J. Xu, J. Rong, F. Qiu, Y. Zhu, K. Mao, Y. Fang, D. Yang, T. Zhang, *Journal of colloid and interface science* **2019**, 555, 294-303.
- [26] H. Su, X. Du, X. Zhang, International Journal of Hydrogen Energy 2019, 44, 30910-30916.
- [27] J. Tie, J. Han, G. Diao, J. Liu, Z. Xie, G. Cheng, M. Sun, L. Yu, *Applied Surface Science* 2018, 435, 187-194.
- [28] D. Wang, X. Zhang, Z. Du, Z. Mo, Y. Wu, Q. Yang, Y. Zhang, Z. Wu, International Journal of Hydrogen Energy 2017, 42, 3043-3050.
- [29] Y. Sun, D. Li, J. Lu, Y. Zhang, L. Li, J. Liang, *Crystal Research and Technology* 2019, 54, 1800248.
- [30] H. Li, Y. Shao, Y. Su, Y. Gao, X. Wang, *Chemistry of Materials* **2016**, *28*, 1155-1164.
- [31] D. Zhang, J. Li, J. Luo, P. Xu, L. Wei, D. Zhou, W. Xu, D. Yuan, *Nanotechnology* **2018**, *29*, 245402.
- [32] T. Liu, Y. Liang, Q. Liu, X. Sun, Y. He, A. M. Asiri, *Electrochemistry Communications* 2015, 60, 92-96.
- [33] S. Zhang, Y. Sun, F. Liao, Y. Shen, H. Shi, M. Shao, *Electrochimica Acta* 2018, 283, 1695-1701.
- [34] H. Zou, B. He, P. Kuang, J. Yu, K. Fan, *ACS applied materials & interfaces* **2018**, *10*, 22311-22319.
- [35] S. M. N. Jeghan, G. Lee, *Nanotechnology* 2020.
- [36] S. Hyun, S. Shanmugam, *ACS omega* **2018**, *3*, 8621-8630.
- [37] Z. Zhang, X. Wang, G. Cui, A. Zhang, X. Zhou, H. Xu, L. Gu, Nanoscale 2014, 6, 3540-3544.
- [38] X. Xu, W. Zhong, L. Zhang, G. Liu, W. Xu, Y. Zhang, Y. Du, Surface and Coatings Technology 2020, 397, 126065.
- [39] G. B. Shombe, M. D. Khan, A. M. Alenad, J. Choi, T. Ingsel, R. K. Gupta, N. Revaprasadu, Sustainable Energy & Fuels 2020, 4, 5132-5143.
- [40] R. Biswas, P. Thakur, G. Kaur, S. Som, M. Saha, V. Jhajhria, H. Singh, I. Ahmed, B. Banerjee, D. Chopra, *Inorganic Chemistry* **2021**, *60*, 12355-12366.
- [41] H. Luo, H. Lei, Y. Yuan, Y. Liang, Y. Qiu, Z. Zhu, Z. Wang, Catalysts 2019, 9, 459.
- [42] A. M. Wiltrout, C. G. Read, E. M. Spencer, R. E. Schaak, *Inorganic chemistry* 2016, 55, 221-226.