Supplementary Material

Aptamer Fluorescence Anisotropy Assays for Detection of Aflatoxin B1 and Adenosine Triphosphate Using Antibody to Amplify Signal Change

Yapiao Li,^{1,2} Hao Yu, ^{1,2} Qiang Zhao^{1,2,3*}

1. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou
310000, China

* Corresponding author

E-mail: qiangzhao@rcees.ac.cn

Tel: +86-10-62849892. Fax: +86-10-62849892.

Name	Sequences (5' to 3')
Apt _{AFB} -5'FAM	FAM-TGC ACG TGT TGT CTC TCT GTG TCT CGT GC
Apt _{AFB} -3'FAM	TGC ACG TGT TGT CTC TCT GTG TCT CGT GC-FAM
$C14_{AFB}$	AGA CAA CAC GTG CA-Digoxin
Apt _{ATP} -5'FAM	FAM-CCT GGG GGA GTA TTG CGG AGG AAG G
C11 _{ATP}	ACT CCC CCA GG - Digoxin

Table S1 List of oligonucleotide sequences

Table S2 Comparison of fluorescence polarization/anisotropy designs for detection of

AFB1 and ATP with respect to affinity ligand, maximum signal change, and detection limit.

Target	Methods	Affinity	Maximum signal	LOD	Referenc
s		ligand	change		es
AFB1	Enzymes amplified FP sensing	aptamer	~0.275 (P)	0.24 pM	[25]
AFB1	FA assay using antibody as signal amplifier	aptamer	0.138 (r); 0.173	25 pM	Our
			(P)		assay
AFB1	FA assay using streptavidin for signal	aptamer	0.146 (r); 0.188	60 pM	[20]
	enhancement		(P)		
AFB1	Direct FA assay for AFB1	aptamer	0.115 (r)	2 nM	[24]
AFB1	Competitive immune-FP assay using FAM-	antibody	No mention	3.2 nM	[26]
	labeled AFB1				
AFB1	Competitive immune-FP assay using FAM-	antibody	0.050 (P)	42 nM	[27]
	labeled AFB1				
ATP	Using quantum dots and Au nanoparticles	aptamer	~0.320 (P)	1.8 pM	[19]
ATP	Using silica nanoparticles for signal	aptamer	~0.320 (P)	20 pM	[16]
	amplification				
ATP	Using DNA-protein hybrid nanowire	aptamer	0.037 (r)	0.1 μΜ	[17]
	assembly				
ATP	Using GO for signal amplification	aptamer	~0.316 (P)	0.12 μΜ	[30]
ATP	FA assay using streptavidin for signal	aptamer	0.081 (r); 0.104	0.5 μΜ	[20]
	enhancement		(P)		
ATP	Competitive assay	aptamer	0.174 (r); 0.230	0.5 μΜ	[31]
			(P)		
ATP	FA assay using antibody as signal amplifier	aptamer	0.060 (r); 0.080	1 µM	Our
			(P)		assay
ATP	Direct assay using dye-labeled aptamer	aptamer	0.047 (r) or	1 µM	[32]
			0.052 (r)		
ATP	Using GO for signal amplification	aptamer	~0.100 (P)	2 μΜ	[33]
ATP	Using antibody as mass enhancer and QDs	aptamer	~0.100 (P)	3.7 µM	[19]

r is corresponding to FA, and P is corresponding to FP.

Target	EC ₅₀ /nM	CR	LOD / nM	Detection range / nM
AFB1	1.3	100%	0.025	0.025-100
AFB2	1.6	81%	0.025	0.025-100
AFM1	4.2	32%	0.39	0.39-100
AFM2	4.1	32%	0.39	0.39-100
AFG1	16	8%	1.6	1.56-800
AFG2	22	6%	1.6	1.56-800

Table S3 Comparison of EC_{50} , Cross reactivity (CR), detection limit and detection range of AFB1, AFB2, AFM1, AFM2, AFG1 and AFG2 using this method.

Fig. S1. Selectivity test of the aptamer FA sensor to AFB1 with other mycotoxins. Blank was the solution containing 1 nM Apt_{AFB}-5'FAM and 20 nM antibodyconjugated C14_{AFB}. AFB1 at 10 nM and the other mycotoxins at 200 nM were tested. Mixture sample contained 200 nM other mycotoxins and 10 nM AFB1.

Fig. S2. FA responses corresponding to various concentrations of mycotoxins (such as AFB1, AFB2, AFM1, AFM2, AFG1, AFG2) in binding buffer using 1 nM Apt_{AFB}-5'FAM and 20 nM antibody-conjugated $C14_{AFB}$.

Fig. S3. FA values corresponding to various concentrations of AFB1 in binding buffer, 10-fold diluted white wine, 10-fold diluted tap water and 20-fold diluted grape juice samples. The concentration of Apt_{AFB} -5'FAM and antibody-conjugated C14_{AFB} at 3' end were 1 nM and 20 nM, respectively.

Fig. S4. Effects of concentrations of antibody-conjugated $C11_{ATP}$ on the FA values corresponding to the blank sample and the sample containing ATP (500 μ M ATP). The concentration of Apt_{ATP}-5'FAM was 5 nM.

Fig. S5. Effects of incubation time on the FA values corresponding to the blank sample and the sample containing ATP (500 μ M ATP). The concentration of Apt_{ATP}-5'FAM and antibody-conjugated C11_{ATP} were 5 nM and 20 nM, respectively.

Fig. S6. Quantitative detection of ATP. FP responses versus the concentrations of ATP. The inset shows the FP signals corresponding to low concentrations of ATP.

Fig. S7. Selectivity of the aptamer FA assay for ATP. Blank was the solution containing 5 nM Apt_{ATP}-5'FAM and 20 nM antibody-conjugated $C11_{ATP}$. ATP at 500 μ M and the other small molecules at 500 μ M were tested. Mixture sample contained 500 μ M other small molecules and 500 μ M ATP.

Fig. S8. FA values corresponding to various concentrations of ATP in binding buffer, 50-fold diluted human serum and 20-fold diluted urine samples. The concentration of Apt_{ATP}-5'FAM and antibody-conjugated $C11_{ATP}$ were 5 nM and 20 nM, respectively.