List of supplementary

- 1. TGA of fresh red mud (RM_x)
- 2. XRD diffractogram of fresh red mud (RM_x)
- N₂ adsorption-desorption isotherms of (A) *RMO_x*, (B) *Ni/RMO_x*, (C) Ni/rRM₁ and Ni/rRM₃ and (D) Ni/rRM₂ catalysts
- 4. Pore size distribution (BJH) curves of (A) *RMO_x*, (B) *Ni/RMO_x* and (C) *Ni/rRM_x* catalysts
- 5. TPD-NH₃ peaks for A) RM_x, B) Ni/RMO_x and C) Ni/RM_x catalysts
- 6. Alkanes and alkenes $n-(C_{15} + C_{17})$ distribution for RMO_x , Ni/RMO_x and Ni/rRM_x catalysed DO reaction
- FTIR spectra of deoxygenated liquid product catalysed by (A) RMO_x, (B) Ni/RMO_x and
 (C) Ni/rRM_x catalysts
- Gas analysis for Ni/RMO₃ catalysed DO. Operating parameter: T = 350 °C, 2 h reaction time, 3 wt.% of catalyst loading.

Fig. S1. TGA of fresh red mud (RM_x) .

Fig. S2. XRD diffractogram of fresh red mud (RM_x) .

Fig. S3. N₂ adsorption-desorption isotherms of (A) RMO_x , (B) Ni/RMO_x , (C) Ni/rRM₁ and Ni/rRM₃ and (D) Ni/rRM₂ catalysts.

Ni/rRM_x catalysts.

Fig. S5. TPD-NH₃ peak of A) *RMO_x*, B) *Ni/RMO_x* and C) *Ni/RM_x* catalysts.

Fig. S6. Alkanes and alkenes $n-(C_{15} + C_{17})$ distribution for RMO_x , Ni/RMO_x and Ni/rRM_x catalysed DO reaction. Reaction condition: T = 350 °C, 2 h reaction time, 3 wt.% of catalyst loading.

Fig. S7 FTIR spectra of deoxygenated liquid product catalysed by (A) RMO_x , (B) Ni/RMO_x and

(C) *Ni/rRM_x* catalysts

Fig. S8. Gas analysis for Ni/RMO₃ catalysed DO. Operating parameter: T = 350 °C, 2 h reaction time, 3 wt.% of catalyst loading.