Acetylene containing 2-(2-hydrazinyl)thiazole derivatives: Design, Synthesis, in vitro and in silico evaluation

of antimycobacterial activity against Mycobacterium tuberculosis

Lakshmi Haritha Bharathi Maganti^a, Deepthi Ramesh^a, Balaji Gowrivel Vijayakumar^a, Mohd Imran K. Khan^b, Arunkumar Dhayalan^b, Jayabal Kamalraja^a, Tharanikkarasu Kannan^{a,*}

^aDepartment of Chemistry, Pondicherry University, Kalapet, Puducherry-605014, India.

^bDepartment of Biotechnology, Pondicherry University, Kalapet, Puducherry-605014, India.

*Corresponding author: Tel: +91-413-265 4411; Fax: +91-413-265 6740.

Email address: tharani.che@pondiuni.edu.in

Contents

- A. Procedure for in vitro anti-tubercular activity studies
- B. Spectroscopic data (¹H and ¹³C NMR, FT-IR and Mass) of compounds from 1 to 32
- C. Spectra (Mass, ${}^{1}H$ and ${}^{13}C$ NMR, and FT-IR) of compounds from 1 to 32
- D. Table S1. Library of acetylene containing 2-(2-hydrazinyl)thiazole derivatives used in the present investigation

- E. Table S2. Pharmacokinetic analysis and *in vitro* mycobacterial analysis results of acetylene containing 2-(2-hydrazinyl)thiazole derivatives
- F. Table S3. ADME properties of acetylene containing 2-(2-hydrazinyl)thiazole derivatives
- G. Table S4. Single-crystal XRD data
- H. Table S5. Summary of active compounds % inhibition at $50 \ \mu g/ml$
- I. Table S6. In silico studies of active compounds with KasA protein
- J. Table S7. Summary of the analysis of variance (ANOVA) data at $50 \mu g/ml$
- K. Table S8. Summary of the analysis of variance (ANOVA) data at $100 \,\mu$ g/ml
- L. Fig. S1. Reported biological compounds containing thiazole and acetylene pharmacophores

A In vitro anti-tubercular activity study

1. Preparation of sample

The stock solution was made by dissolving 10 mg of a sample in 1mL of DMSO. The working stock solutions of 1 mg/mL and 0.5 mg/mL were further prepared from this stock solution by the addition of an adequate volume of Middlebrook 7H9 broth. This was yet again sterilized by filtration with 0.45 μ filter.

2. Luciferase reporter mycobacteriophages (LRP) assay

Four cryovials per set (two for control and two for 100 μ g/mL and 50 μ g/mL concentrations) were taken. 400 μ l of Middlebrook 7H9 broth was added into first two vials and 350 μ l in the third and fourth vial. By the addition of 50 μ l of 1mg/mL stock solution to the 3rd and 4th vials respectively, a total concentration of 400 μ l was achieved. *M.tb*H₃₇Rv cell suspension of 100 μ l ocncentration was added to the vials and these vials are incubated at 37 °C for 72 h. Then, 50 μ l of phage phAE202 and 40 μ l of 0.1M CaCl₂ were introduced to all the vials making the cell-phage mixture, and incubated at 37 °C for 4 h. After incubation, 100 μ l of the cell-phage mixture was moved to a luminometer cuvette. 100 μ l of D-luciferin was added and the relative light unit (RLU) was taken in a luminometer (Berthold) at 10S integration. The percentage of reduction in RLU of the test compared to control was calculated by using the following equation,

$$Percentage \ of \ Reduction \ in \ RLU = \frac{Control \ RLU - Test \ RLU}{Control \ RLU} \times 100$$

Compounds with 50% RLU reduction and above when compared with control were considered as active against M.Tb.

B. Spectroscopic data (¹H and ¹³C NMR, FT-IR and Mass) of compounds from 1 to 32.

1. 2-(Prop-2-yn-1-yloxy)benzaldehyde (1)

White solid, Yield: 80%. M.P: 67-69°C. ¹H NMR (400 MHz, DMSO) δ 10.35 (s, 1H), 7.72 (d, *J* = 7.7 Hz, 1H), 7.68 (t, *J* = 7.0 Hz, 1H), 7.30 (d, *J* = 8.4 Hz, 1H), 7.13 (t, *J* = 7.5 Hz, 1H), 5.00 (s, 2H), 3.66 (s, 1H). ¹³C NMR (101 MHz, DMSO) δ 188.99, 159.50, 136.19, 127.88, 124.79, 121.53, 114.27, 79.06, 78.63, 56.43. FT-IR (KBr, cm⁻¹): 3270.2 (alkyne C-H stretch), 2973.3 (aromatic C-H), 2876 (aldehyde C-H stretch), 2116.1 (alkyne -C=C- stretch), 1684.6 (aldehyde C=O stretch), 1598 (aromatic C=C), 1264.5 (C-O stretch). ESI-HRMS: Calculated for C₁₀H₈O₂ = 160.0524; [M+H]⁺ found = 161.0599.

2. 3-Ethoxy-4-(prop-2-yn-1-yloxy)benzaldehyde (2)

Pale yellow solid, Yield: 78%. M.P: 74-75°C. ¹H NMR (400 MHz, DMSO) δ 9.82 (s, 1H), 7.53 (d, *J* = 6.7 Hz, 1H), 7.39 (s, 1H), 7.21 (d, *J* = 8.3 Hz, 1H), 4.92 (s, 2H), 4.07 (d, *J* = 7.0 Hz, 2H), 3.50 (s, 1H), 1.33 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, DMSO) δ 191.79, 152.04, 148.80, 130.47, 125.45, 113.27, 111.15, 78.99, 78.82, 64.13, 56.20, 14.72. FT-IR (KBr, cm-1): 3253.8 (alkyne C-H stretch), 2988.2 (aromatic C-H), 2878.8 (aldehyde C-H stretch), 2736.3 (aldehyde C-H stretch), 2110 (alkyne -C=C- stretch), 1688.2

(aldehyde C=O stretch), 1590.1 (aromatic C=C), 1268.1 (C-O stretch). ESI-HRMS: Calculated for $C_{12}H_{12}O_3 = 204.0786$; [M+H] ⁺ found = 205.0855.

3. 5-Bromo-2-(prop-2-yn-1-yloxy)benzaldehyde (3)

Light brown solid, Yield: 75%. M.P: 92-93°C. ¹H NMR (400 MHz, DMSO) δ 10.24 (s, 1H), 7.84 (d, *J* = 8.9 Hz, 1H), 7.76 (s, 1H), 7.28 (d, *J* = 8.9 Hz, 1H), 5.00 (s, 2H), 3.67 (s, 1H). ¹³C NMR (101 MHz, DMSO) δ 187.99, 158.56, 138.36, 130.14, 126.36, 117.09, 113.47, 79.48, 78.33, 56.89. FT-IR (KBr, cm-1): 3237.4 (alkyne C-H stretch), 2980.7 (aromatic C-H), 2880.1 (aldehyde C-H stretch), 2769.3 (aldehyde C-H stretch), 2116.7 (alkyne -C=C- stretch), 1680.9 (aldehyde C=O stretch), 1590.2 (aromatic C=C), 1273.5 (C-O stretch), 693 (C-Br stretch). ESI-HRMS: Calculated for C₁₀H₇BrO₂ = 237.9629; [M+H] ⁺ found = 238.9701.

4. (E)-2-(2-(Prop-2-yn-1-yloxy)benzylidene)hydrazine-1-carbothioamide (4)

White solid, Yield: 75%. M.P: 174-176°C. 1H NMR (400 MHz, DMSO) δ 11.47 (s, 1H), 8.40 (s, 1H), 8.17 (s, 1H), 8.11 (s, 1H), 7.96 (s, 1H), 7.38 (s, 1H), 7.13 (s, 1H), 7.00 (s, 1H), 4.89 (s, 2H), 3.62 (s, 1H). ¹³C NMR (101 MHz, DMSO) δ 177.90, 155.75, 137.67, 131.07, 126.33, 122.91, 121.41, 113.29, 79.05, 78.68, 56.14. FT-IR (KBr, cm-1): 3385.8 (N-H stretch), 3270.2 (alkyne C-H stretch), 3023.2 (aromatic C-H), 2118.2 (alkyne -C=C- stretch), 1595 (aromatic C=C), 1535.2 (C=N stretch), 1358.5 (C-N stretch), 1266 (C-O stretch). ESI-HRMS: Calculated for C₁₁H₁₁N₃OS = 233.0623; [M+H] ⁺ found = 234.0695.

5. (E)-2-(3-Ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazine-1-carbothioamide (5)

Light yellow solid, Yield: 78%. M.P: 190-192°C. ¹H NMR (400 MHz, DMSO) δ 11.31 (s, 1H), 8.14 (s, 1H), 8.02 (s, 1H), 7.95 (s, 1H), 7.51 (s, 1H), 7.14 (s, 1H), 7.04 (s, 1H), 4.83 (s, 2H), 4.09 (q, *J* = 7.0 Hz, 2H), 3.56 (s, 1H), 1.34 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, DMSO) δ 177.65, 148.79, 148.35, 142.49, 127.93, 121.74, 113.58, 109.99, 79.22, 78.55, 64.00, 55.94, 14.77. FT-IR (KBr, cm-1): 3321.9 (N-H stretch), 3265.9 (alkyne C-H stretch), 2982.4 (aromatic C-H), 2124.8 (alkyne -C=C- stretch), 1593.5 (aromatic C=C), 1532.2 (C=N stretch), 1365.6 (C-N stretch), 1323, 1265.6 (C-O stretch). ESI-HRMS: Calculated for C₁₃H₁₅N₃O2S = 277.0885; [M+H] ⁺ found = 278.0958.

6. (E)-2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazine-1-carbothioamide (6)

Light brown solid, Yield: 80%. M.P: 204-206°C. ¹H NMR (400 MHz, DMSO) δ 11.49 (s, 1H), 8.33 (d, *J* = 10.8 Hz, 2H), 8.20 (s, 2H), 7.50 (s, 1H), 7.09 (s, 1H), 4.88 (s, 2H), 3.61 (s, 1H). ¹³C NMR (101 MHz, DMSO) δ 178.10, 154.86, 136.12, 133.25, 128.38, 125.25, 115.74, 113.91, 79.03, 78.73, 56.57. FT-IR (KBr, cm-1): 3435.5 (N-H stretch), 3278.2 (alkyne C-H stretch), 2971.5 (aromatic C-H), 2118.7 (alkyne -C=C- stretch), 1595.2 (aromatic C=C), 1530.6 (C=N stretch), 1363.1 (C-N stretch), 1266.7 (C-O stretch), 650.2 (C-Br stretch). ESI-HRMS: Calculated for C₁₁H₁₀BrN₃OS = 312.9707; [M+H] ⁺ found = 311.9798.

7. (E)-4-Phenyl-2-(2-(2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (7)

White solid, Yield: 70%. M.P: 183-185°C. ¹H NMR (400 MHz, DMSO) δ 12.15 (s, 1H), 8.36 (s, 1H), 7.86 – 7.80 (m, 3H), 7.40 (s, 3H), 7.30 (d, *J* = 7.2 Hz, 2H), 7.16 (s, 1H), 7.06 (s, 1H), 4.90 (s, 2H), 3.61 (s, 1H). ¹³C NMR (101 MHz, DMSO) δ 168.42, 155.14, 150.57, 136.75, 134.73, 130.67, 128.81, 127.76, 125.71, 125.24, 123.24, 121.80, 113.56, 103.82, 79.21, 78.78, 56.21. FT-IR (KBr,

cm-1): 3448.5 (N-H stretch), 3276.7 (alkyne C-H stretch), 2915.4 (aromatic C-H), 2120.8 (alkyne -C=C- stretch), 1603.8 (aromatic C=C), 1570.8 (C=N stretch), 1366.3 (C-N stretch), 1272.9 (C-O stretch). ESI-HRMS: Calculated for $C_{19}H_{15}N_3OS = 333.0936$; [M+H] ⁺ found = 334.1004.

8. (E)-4-(4-Fluorophenyl)-2-(2-(2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (8)

Pale yellow solid, Yield: 70%. M.P: 180-182°C. ¹H NMR (400 MHz, DMSO) δ 11.89 (s, 1H), 8.36 (s, 1H), 7.87 – 7.80 (m, 3H), 7.36 (s, 1H), 7.29 – 7.18 (m, 3H), 7.14 (d, *J* = 8.1 Hz, 1H), 7.05 (s, 1H), 4.89 (s, 2H), 3.60 (s, 1H). ¹³C NMR (101 MHz, DMSO) δ 168.56, 163.03, 160.60, 155.19, 149.40, 137.02, 131.28, 130.74, 127.78, 125.27, 123.21, 121.81, 115.74, 115.53, 113.57, 103.59, 79.20, 78.78, 56.24. FT-IR (KBr, cm-1): 3439.6 (N-H stretch), 3280.1 (alkyne C-H stretch), 3188.6 (aromatic C-H), 2100 (alkyne - C=C- stretch), 1602.5 (aromatic C=C), 1569.5 (C=N stretch), 1434.4 (C-F stretch), 1362.4 (C-N stretch), 1273.7 (C-O stretch). ESI-HRMS: Calculated for C₁₉H₁₄FN₃OS = 351.0842; [M+H] ⁺ found = 352.0912.

9. (E)-4-(4-Chlorophenyl)-2-(2-(2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (9)

White solid, Yield: 75%. M.P: 160-164°C. ¹H NMR (400 MHz, DMSO) δ 12.19 (s, 1H), 8.36 (s, 1H), 7.88 – 7.79 (m, 3H), 7.46 (d, *J* = 8.2 Hz, 2H), 7.37 (d, *J* = 7.6 Hz, 2H), 7.16 (s, 1H), 7.06 (s, 1H), 4.91 (s, 2H), 3.63 (s, 1H). ¹³C NMR (101 MHz, DMSO) δ 168.39, 155.05, 149.23, 136.76, 133.50, 131.97, 130.54, 128.66, 127.28, 125.09, 123.07, 121.64, 113.45, 104.50, 79.07, 78.71, 56.12. FT-IR (KBr, cm-1): 3457.5 (N-H stretch), 3284.9 (alkyne C-H stretch), 2100 (alkyne -C=C- stretch), 1627.5 (C=N stretch), 1602.6

(aromatic C=C), 1567.9 (C=N stretch), 1359 (C-N stretch), 1229.6 (C-O stretch), 828 (C-Cl stretch). ESI-HRMS: Calculated for $C_{19}H_{14}ClN_3OS = 367.0546$; [M+H]⁺ found = 368.0616.

10. (E)-4-(3,4-Dichlorophenyl)-2-(2-(2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (10)

White solid, Yield: 75%. M.P: 175-177°C. ¹H NMR (400 MHz, DMSO) δ 12.19 (s, 1H), 8.36 (s, 1H), 8.06 (s, 1H), 7.80 (d, J = 7.9 Hz, 2H), 7.66 (s, 1H), 7.52 (s, 1H), 7.37 (s, 1H), 7.16 (s, 1H), 7.05 (s, 1H), 4.90 (s, 2H), 3.62 (s, 1H). ¹³C NMR (101 MHz, DMSO) δ 168.53, 155.10, 147.97, 136.97, 135.24, 131.49, 130.91, 130.65, 129.76, 127.21, 125.64, 125.14, 123.05, 121.68, 113.5, 105.96, 79.10, 78.72, 56.16. FT-IR (KBr, cm-1): 3450.9 (N-H stretch), 3295.5 (alkyne C-H stretch), 2100 (alkyne -C=C- stretch), 1602 (aromatic C=C), 1568.1 (C=N stretch), 1356 (C-N stretch), 1226.4 (C-O stretch), 747.9 (C-Cl stretch). ESI-HRMS: Calculated for C₁₉H₁₃C₁₂N₃OS = 401.0156; [M+H]⁺ found = 402.0230.

11. (*E*)-4-(4-Bromophenyl)-2-(2-(2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (11)

Light yellowish brown solid, Yield: 70%. M.P: 144-146°C. ¹H NMR (400 MHz, DMSO) δ 12.17 (s, 1H), 8.35 (s, 1H), 7.80 (d, *J* = 8.4 Hz, 3H), 7.59 (d, *J* = 8.4 Hz, 2H), 7.37 (s, 2H), 7.16 (s, 1H), 7.06 (s, 1H), 4.91 (s, 2H), 3.62 (s, 1H). ¹³C NMR (101 MHz, DMSO) δ 168.44, 155.07, 149.43, 136.73, 133.93, 131.60, 130.58, 127.63, 125.13, 123.12, 121.69, 120.59, 113.48, 104.6, 79.11, 78.71. FT-IR (KBr, cm-1): 3461.1 (N-H stretch), 3272.1 (alkyne C-H stretch), 3072.3 (aromatic C-H), 2100 (alkyne -C=C- stretch), 1604.8 (aromatic C=C), 1569.4 (C=N stretch), 1357.3 (C-N stretch), 1225.1 (C-O stretch), 692.1 (C-Br stretch). ESI-HRMS: Calculated for C₁₉H₁₄BrN₃OS = 413.0022; [M+H] ⁺ found = 412.0111.

12. (E)-4-(4-Nitrophenyl)-2-(2-(2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (12)

Orange red solid, Yield: 75%. M.P: 185-187°C. ¹H NMR (400 MHz, DMSO) δ 12.28 (s, 1H), 8.37 (s, 1H), 8.26 (d, *J* = 8.5 Hz, 2H), 8.09 (d, *J* = 8.7 Hz, 2H), 7.80 (d, *J* = 7.7 Hz, 1H), 7.69 (s, 1H), 7.38 (t, *J* = 7.7 Hz, 1H), 7.15 (d, *J* = 8.4 Hz, 1H), 7.06 (t, *J* = 7.5 Hz, 1H), 4.91 (s, 2H), 3.63 (s, 1H). ¹³C NMR (101 MHz, DMSO) δ 168.44, 155.07, 149.43, 136.73, 133.93, 131.60, 130.58, 127.63, 125.13, 123.12, 121.69, 120.59, 113.48, 104.6, 79.11, 78.71, 56.14. FT-IR (KBr, cm-1): 3310.6 (N-H stretch), 3267.7 (alkyne C-H stretch), 2110 (alkyne -C=C- stretch), 1598.7 (aromatic C=C), 1564.9 (C=N stretch), 1500.1 (N-O stretch), 1329.7 (N-O stretch), 1280.8 (C-N stretch), 1239.7 (C-O stretch). ESI-HRMS: Calculated for C₁₉H₁₄N₄O₃S = 378.0787; [M+H]⁺ found = 379.0858.

13. (E)-4-(2-(2-(2-(Prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazol-4-yl)benzonitrile (13)

Light green solid, Yield: 65%. M.P: 150-152°C. ¹H NMR (400 MHz, DMSO) δ 12.23 (s, 1H),8.36 (s, 1H), 8.01 (d, J = 8.1 Hz, 2H), 7.84 (d, J = 8.1 Hz, 2H), 7.79 (s, 1H), 7.58 (s, 1H), 7.37 (s, 1H), 7.16 (s, 1H), 7.05 (s, 1H), 4.90 (s, 2H), 3.60 (s, 1H). ¹³C NMR (101 MHz, DMSO) δ 168.72, 155.19, 148.95, 138.85, 137.15, 136.92, 132.83, 130.76, 126.29, 125.24, 123.12, 121.79, 119.17, 109.71, 107.66, 79.18, 78.76, 56.24. FT-IR (KBr, cm-1): 3445.7 (N-H stretch), 3277.2 (alkyne C-H stretch), 2224.1 (C=N stretch), 2110 (alkyne -C=C- stretch), 1605.8 (aromatic C=C), 1566.8 (C=N stretch), 1361 (C-N stretch), 1228.1 (C-O stretch). ESI-HRMS: Calculated for C₂₀H₁₄N₄OS = 358.0888; [M+H]⁺ found = 359.0959.

14. (E)-2-(2-(2-(Prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(p-tolyl)thiazole (14)

White solid, Yield: 70%. M.P: 128-130°C. ¹H NMR (400 MHz, DMSO) δ 8.34 (s, 1H), 7.81 (s, 1H), 7.73 (d, *J* = 8.1 Hz, 2H), 7.37 (s, 1H), 7.20 (d, *J* = 5.8 Hz, 3H), 7.16 (s, 1H), 7.06 (s, 1H), 4.90 (s, 2H), 3.60 (s, 1H), 2.30 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 168.3, 155.11, 150.64, 137.01, 136.62, 132.09, 130.62, 129.35, 125.64, 125.20, 123.26, 121.79, 113.56, 102.87, 79.20, 78.75, 56.20, 20.96. FT-IR (KBr, cm-1): 3287.7 (alkyne C-H stretch), 2921.3 (aromatic C-H), 2110 (alkyne -C=C- stretch), 1602.9 (aromatic C=C), 1568.7 (C=N stretch), 1362.4 (C-N stretch), 1224.9 (C-O stretch). ESI-HRMS: Calculated for C₂₀H₁₇N₃OS= 347.1092; [M+H]⁺ found = 348.1161.

15. (E)-4-(4-Methoxyphenyl)-2-(2-(2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (15)

White solid, Yield: 75%. M.P: 181-183°C. ¹H NMR (400 MHz, DMSO) δ 8.35 (s, 1H), 7.81 (dd, J = 7.8, 1.7 Hz, 1H), 7.77 (d, J = 8.9 Hz, 2H), 7.38 (s, 1H), 7.16 (d, J = 7.7 Hz, 2H), 7.06 (t, J = 7.5 Hz, 1H), 6.97 (d, J = 8.9 Hz, 2H), 4.91 (s, 2H), 3.78 (s, 3H), 3.63 (s, 1H). 13C NMR (101 MHz, DMSO) δ 168.34, 167.09, 159.17, 155.27, 148.15, 138.21, 130.94, 129.05, 127.22, 126.32, 125.30, 122.87, 121.71, 114.12, 109.07, 101.95, 79.09, 78.80, 56.21, 55.27, 39.52. FT-IR (KBr, cm-1): 3450.4 (N-H stretch), 3252.2 (alkyne C-H stretch), 3052.9 (aromatic C-H), 2115.9 (alkyne -C=C- stretch), 1622.1 (aromatic C=C), 1567.6 (C=N stretch), 1329 (C-N stretch), 1256.6 (C-O stretch), 1184.2 (C-O stretch). ESI-HRMS: Calculated for C20H17N3O2S = 363.1041; [M+H] + found = 364.1112.

16. (E)-2-(2-(3-Ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-phenylthiazole (16)

White solid, Yield: 72%. M.P: 221-223°C. ¹H NMR (400 MHz, DMSO) δ 8.01 (s, 1H), 7.84 (d, J = 7.1 Hz, 2H), 7.41 (t, J = 7.6 Hz, 2H), 7.31 (t, J = 7.3 Hz, 3H), 7.19 (dd, J = 8.4, 1.8 Hz, 1H), 7.08 (d, J = 8.4 Hz, 1H), 4.85 (s, 2H), 4.07 (d, J = 7.0 Hz, 2H), 3.59 (s, 1H), 1.36 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, DMSO) δ 168.55, 167.18, 148.76, 148.15, 142.67, 133.69, 129.51, 128.84, 128.49, 128.01, 125.83, 120.24, 114.12, 110.08, 103.89, 90.74, 79.26, 78.67, 63.95, 56.09, 14.84. FT-IR (KBr, cm-1): 3428.5 (N-H stretch), 3201.8 (alkyne C-H stretch), 2934.3 (aromatic C-H), 2111.7 (alkyne -C=C- stretch), 1624.2 (aromatic C=C), 1510.2 (C=N stretch), 1323.1 (C-N stretch), 1269.3 (C-O stretch), 1223.1 (C-O stretch). ESI-HRMS: Calculated for C21H19N3O2S = 377.1198; [M+H] + found = 378.1263.

17. (E)-2-(2-(3-Ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(4-fluorophenyl)thiazole (17)

Pale yellow solid, Yield: 78%.M.P: 152-154°C. ¹H NMR (400 MHz, DMSO) δ 12.05 (s, 1H), 7.96 (s, 1H), 7.87 (d, *J* = 8.9 Hz, 2H), 7.28 (s, 1H), 7.26 (s, 1H), 7.21 (d, *J* = 8.9 Hz, 2H), 7.16 (s, 1H), 7.08 (s, 1H), 4.84 (s, 2H), 4.08 (s, 2H), 3.56 (s, 1H), 1.36 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 168.52, 160.46, 149.55, 148.71, 147.87, 141.43, 131.40, 128.27, 127.52, 119.81, 115.53, 114.12, 109.90, 79.25, 78.56, 63.86, 56.03, 14.78. FT-IR (KBr, cm-1): 3449.7 (N-H stretch), 3278.5 (alkyne C-H stretch), 2983.8 (aromatic C-H), 2110 (alkyne -C=C- stretch), 1570 (C=N stretch), 1511.1 (aromatic C=C), 1407.3 (C-F stretch), 1358 (C-N stretch), 1265.6 (C-O stretch), 1225.3 (C-O stretch). ESI-HRMS: Calculated for C₂₁H₁₈FN₃O₂S = 395.1104; [M+H] ⁺ found = 396.1178.

18. (E)-4-(4-Chlorophenyl)-2-(2-(3-ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (18)

White solid, Yield: 65%. M.P: 185-186°C. ¹H NMR (400 MHz, DMSO) δ 12.06 (s, 1H), 7.96 (s, 1H), 7.86 (d, J = 8.6 Hz, 2H), 7.45 (d, J = 8.6 Hz, 2H), 7.34 (s, 1H), 7.27 (s, 1H), 7.16 (s, 1H), 7.08 (s, 1H), 4.84 (s, 2H), 4.08 (q, J = 7.0 Hz, 2H), 3.56 (s, 1H), 1.36 (t, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, DMSO) δ 168.55, 149.35, 148.71, 147.89, 141.50, 133.63, 131.98, 128.69, 128.24, 127.28, 119.82, 114.13, 109.93, 104.32, 79.23, 78.54, 63.86, 56.03, 14.77. FT-IR (KBr, cm-1): 3437.8 (N-H stretch), 3310.5 (alkyne C-H stretch), 2875.9 (aromatic C-H), 2110 (alkyne -C=C- stretch), 1572.4 (C=N stretch), 1508.5 (aromatic C=C), 1367.1 (C-N stretch), 1264.6 (C-O stretch), 1220.6 (C-O stretch), 826.4 (C-Cl stretch). ESI-HRMS: Calculated for C₂₁H₁₈CIN₃O₂S = 411.0808; [M+H] ⁺ found = 412.0879.

19. (E)-4-(3,4-Dichlorophenyl)-2-(2-(3-ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (19)

White solid, Yield: 60%. M.P: 153-155°C. ¹H NMR (400 MHz, DMSO) δ 12.15 (s, 1H), 8.06 (s, 1H), 7.96 (s, 1H), 7.82 (d, *J* = 8.2 Hz, 1H), 7.64 (d, *J* = 8.4 Hz, 1H), 7.50 (s, 1H), 7.27 (s, 1H), 7.16 (d, *J* = 8.1 Hz, 1H), 7.07 (d, *J* = 8.3 Hz, 1H), 4.84 (s, 2H), 4.06 (q, *J* = 13.4, 6.6 Hz, 2H), 3.57 (s, 1H), 1.36 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 168.64, 148.69, 147.93, 141.71, 135.29, 131.51, 130.92, 129.73, 128.15, 127.21, 125.60, 119.89, 114.08, 109.89, 105.79, 79.22, 78.56, 63.84, 56.02, 14.77. FT-IR (KBr, cm-1): 3527.6 (N-H stretch), 3276.9 (alkyne C-H stretch), 2982.2, 2935.6 (aromatic C-H), 2115 (alkyne -C=C- stretch), 1573.9 (C=N stretch), 1510.9 (aromatic C=C), 1356.1 (C-N stretch), 1264.2 (C-O stretch), 1220.3 (C-O stretch), 862 (C-Cl stretch). ESI-HRMS: Calculated for C₂₁H₁₇Cl₂N₃O₂S = 445.0419; [M+H] ⁺ found = 446.0492.

20. (E)-4-(4-Bromophenyl)-2-(2-(3-ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (20)

Light brown solid, Yield: 75%. M.P: 187-189°C. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.79 (d, *J* = 8.5 Hz, 2H), 7.58 (d, *J* = 8.5 Hz, 2H), 7.36 (s, 1H), 7.28 (s, 1H), 7.17 (d, *J* = 8.4 Hz, 1H), 7.07 (d, *J* = 8.4 Hz, 1H), 4.84 (s, 2H), 4.07 (q, *J* = 6.9 Hz, 2H), 3.57 (s, 1H), 1.36 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (101 MHz, DMSO) δ 168.55, 149.40, 148.70, 147.88, 141.51, 133.98, 131.61, 128.22, 127.60, 120.57, 119.84, 114.11, 109.89, 104.43, 79.23, 78.56, 63.85, 56.02, 14.78. FT-IR (KBr, cm-1): 3449 (N-H stretch), 3308 (alkyne C-H stretch), 2115 (alkyne -C=C- stretch), 1571.8 (C=N stretch), 1508.3 (aromatic C=C), 1366.9 (C-N stretch), 1264.1 (C-O stretch), 1220.7 (C-O stretch), 621.7 (C-Br stretch). ESI-HRMS: Calculated for C₂₁H₁₈BrN₃O₂S = 457.0284; [M+H] ⁺ found = 456.0363.

21. (E)-2-(2-(3-Ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(4-nitrophenyl)thiazole (21)

Orange red solid, Yield: 78%. M.P:191-193°C. ¹H NMR (400 MHz, DMSO) δ 12.15 (s, 1H), 8.25 (d, J = 9.0 Hz, 2H), 8.08 (d, J = 9.0 Hz, 2H), 7.97 (s, 1H), 7.66 (s, 1H), 7.27 (s, 1H), 7.17 (d, J = 8.4 Hz, 1H), 7.07 (d, J = 8.4 Hz, 1H), 4.84 (s, 2H), 4.08 (q, J = 7.0 Hz, 2H), 3.56 (s, 1H), 1.36 (t, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, DMSO) δ 168.83, 148.71, 147.96, 146.24, 143.59, 140.78, 128.13, 126.38, 125.45, 124.18, 119.93, 114.07, 109.90, 108.45, 79.23, 78.57, 63.86, 56.03, 14.78. FT-IR (KBr, cm-1): 3450 (N-H stretch), 3279.1 (alkyne C-H stretch), 2936.2 (aromatic C-H), 2110 (alkyne -C=C- stretch), 1597.2 (aromatic C=C), 1575.5 (C=N stretch), 1510.3 (N-O stretch), 1344.3 (N-O stretch), 1266.1 (C-N stretch), 1225.1 (C-O stretch). ESI-HRMS: Calculated for C₂₁H₁₈N₄O₄S = 422.1049; [M+H] ⁺ found = 423.1118.

22. (E)-4-(2-(2-(3-Ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazol-4-yl)benzonitrile (22)

Light grey solid, Yield: 70%. M.P: 178-180°C. ¹H NMR (400 MHz, DMSO) δ 12.10 (s, 1H), 8.04 – 7.96 (m, 3H), 7.87 (d, J = 17.9 Hz, 2H), 7.58 (s, 1H), 7.27 (s, 1H), 7.16 (s, 1H), 7.08 (s, 1H), 4.84 (s, 2H), 4.09 – 4.04 (q, 2H), 3.56 (s, 1H), 1.36 (t, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, DMSO) δ 168.75, 148.77, 147.96, 141.84, 138.84, 132.78, 128.15, 126.21, 119.93, 119.12, 114.10, 109.93, 109.64, 107.45, 79.24, 78.59, 63.87, 56.04, 14.79. FT-IR (KBr, cm-1): 3528.6 (N-H stretch), 3290.1 (alkyne C-H stretch), 2879.6 (aromatic C-H), 2223.5 (C=N stretch), 2115 (alkyne -C=C- stretch), 1604.2 (aromatic C=C), 1572 (C=N stretch), 1356.3 (C-N stretch), 1266.2 (C-O stretch), 1221.9 (C-O stretch). ESI-HRMS: Calculated for C₂₂H₁₈N₄O₂S = 402.1150; [M+H]⁺ found = 403.1222.

23. (E)-2-(2-(3-Ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(p-tolyl)thiazole (23)

White solid, Yield: 76%. M.P: 166-168°C. ¹H NMR (400 MHz, DMSO) δ 7.98 (s, 1H), 7.72 (d, *J* = 8.1 Hz, 2H), 7.28 (s, 1H), 7.20 (d, *J* = 6.2 Hz, 3H), 7.16 (s, 1H), 7.08 (s, 1H), 4.84 (d, *J* = 2.3 Hz, 2H), 4.07 (d, *J* = 7.0 Hz, 2H), 3.57 (s, 1H), 2.31 (s, 3H), 1.36 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (101 MHz, DMSO) δ 168.36, 150.09, 148.72, 147.92, 141.72, 137.03, 131.82, 129.30, 128.23, 125.60, 119.90, 114.12, 109.94, 102.69, 79.25, 78.58, 63.87, 56.04, 20.91, 14.79. FT-IR (KBr, cm-1): 3450.4 (N-H stretch), 3312.3 (alkyne C-H stretch), 2872.3 (aromatic C-H), 2115 (alkyne -C=C- stretch), 1573.5 (C=N stretch), 1508.9 (aromatic C=C), 1368.8 (C-N stretch), 1264.8 (C-O stretch), 1220.1 (C-O stretch). ESI-HRMS: Calculated for C₂₂H₂₁N₃O₂S = 391.1354; [M+H]⁺ found = 392.1418.

24. (E)-2-(2-(3-Ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(4-methoxyphenyl)thiazole (24)

White solid, Yield: 80%. M.P: 183-185°C. ¹H NMR (400 MHz, DMSO) δ 12.02 (s, 1H), 7.95 (s, 1H), 7.77 (d, *J* = 8.8 Hz, 2H), 7.27 (s, 1H), 7.15 (s, 1H), 7.09 (d, *J* = 8.6 Hz, 2H), 6.96 (d, *J* = 8.9 Hz, 2H), 4.84 (s, 2H), 4.07 (q, *J* = 6.9 Hz, 2H), 3.77 (s, 3H), 3.57

(s, 1H), 1.36 (t, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, DMSO) δ 168.29, 158.84, 151.40, 148.70, 147.82, 141.21, 128.33, 127.65, 126.92, 119.76, 114.08, 109.88, 101.36, 79.25, 78.55, 63.86, 56.03, 55.19, 14.79. FT-IR (KBr, cm-1): 3446.9 (N-H stretch), 3287.1 (alkyne C-H stretch), 2838.4 (aromatic C-H), 2118.9 (alkyne -C=C- stretch), 1574.9 (C=N stretch), 1507.5 (aromatic C=C), 1368.9 (C-N stretch), 1264.3 (C-O stretch), 1220.3 (C-O stretch), 1177.3 (C-O stretch). ESI-HRMS: Calculated for C₂₂H₂₁N₃O₃S = 407.1304; [M+H]⁺ found = 408.1374.

25. (E)-2-(2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-phenylthiazole (25)

White solid, Yield: 70%. M.P: 195-197°C. ¹H NMR (400 MHz, DMSO) δ 8.27 (s, 1H), 7.90 – 7.80 (m, 3H), 7.52 (d, *J* = 2.6 Hz, 1H), 7.49 – 7.38 (m, 2H), 7.38 – 7.16 (m, 2H), 7.13 (d, *J* = 8.9 Hz, 1H), 4.91 (s, 2H), 3.65 (s, 1H). ¹³C NMR (101 MHz, DMSO) δ 168.13, 154.21, 150.24, 135.20, 134.40, 132.73, 128.62, 127.92, 127.06, 125.71, 125.46, 116.07, 113.62, 104.11, 79.12, 78.75, 56.59. FT-IR (KBr, cm-1): 3339.9 (N-H stretch), 3296.3 (alkyne C-H stretch), 2867.8 (aromatic C-H), 2120 (alkyne -C=C- stretch), 1620.2 (aromatic C=C), 1565.2 (C=N stretch), 1362.8 (C-N stretch), 1227.6 (C-O stretch), 628.2 (C-Br stretch). ESI-HRMS: Calculated for C₁₉H₁₄BrN₃OS = 413.0022; [M+H]⁺ found = 412.0115.

26. (E)-2-(2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(4-fluorophenyl)thiazole (26)

Pale yellow solid, Yield: 80%. M.P: 207-209°C. ¹H NMR (400 MHz, DMSO) δ 8.27 (s, 1H), 7.88 (dd, J = 8.7, 5.6 Hz, 2H), 7.85 (s, 1H), 7.54 (dd, J = 8.8, 2.6 Hz, 1H), 7.32 (s, 1H), 7.23 (t, J = 8.9 Hz, 2H), 7.14 (d, J = 8.9 Hz, 1H), 4.92 (s, 2H), 3.67 (s, 1H). ¹³C NMR (101 MHz, DMSO) δ 168.23, 166.85, 163.07, 160.62, 154.29, 146.94, 136.03, 132.96, 130.11, 127.74, 127.13, 125.11, 115.44 (s), 113.65, 103.91, 91.18, 79.14, 78.68, 56.61, 39.52. FT-IR (KBr, cm-1): 3424.8 (N-H stretch), 3213.1 (alkyne C-H stretch), 2932.4 (aromatic C-H), 2115.4 (alkyne -C≡C- stretch), 1622.2 (aromatic C=C), 1507.5 (C=N stretch), 1477.7, 1414.1 (C-F stretch), 1367 (C-N stretch), 1233.3 (C-O stretch), 626.6 (C-Br stretch). ESI-HRMS: Calculated for C19H13BrFN3OS = 430.9927; [M+H] + found = 430.0019.

27. (E)-2-(2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(4-chlorophenyl)thiazole (27)

White solid, Yield: 75%. M.P: 209-211°C. 1H NMR (400 MHz, DMSO) δ 8.27 (s, 1H), 7.85 (t, J = 5.4 Hz, 3H), 7.54 (dd, J = 8.8, 2.6 Hz, 1H), 7.46 (d, J = 8.6 Hz, 2H), 7.40 (s, 1H), 7.14 (d, J = 8.9 Hz, 1H), 4.92 (s, 2H), 3.67 (s, 1H). 13C NMR (101 MHz, DMSO) δ 168.23, 166.90, 154.28, 146.63, 136.04, 132.89, 132.40, 129.62, 128.72, 128.45, 127.39, 127.12, 125.36, 125.06, 115.92, 104.85, 91.91, 79.13, 78.66, 56.58, 48.71, 39.52. FT-IR (KBr, cm-1): 3425 (N-H stretch), 3211.9 (alkyne C-H stretch), 2877 (aromatic C-H), 2116.9 (alkyne -C=C- stretch), 1627.3 (aromatic C=C), 1522.6 (C=N stretch), 1364.1 (C-N stretch), 1225 (C-O stretch), 822.5 (C-Cl stretch), 626.1 (C-Br stretch). ESI-HRMS: Calculated for C19H13BrClN3OS = 446.9629; [M+H] + found = 445.9723.

28. (E)-2-(2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(3,4-dichlorophenyl)thiazole (28)

White solid, Yield: 68%. M.P: 213-215°C. ¹H NMR (400 MHz, DMSO) δ 12.46 (s, 1H), 8.25 (s, 1H), 8.04 (s, 1H), 7.82 (d, *J* = 18.2 Hz, 2H), 7.64 (s, 1H), 7.53 (d, *J* = 5.2 Hz, 2H), 7.13 (s, 1H), 4.91 (s, 2H), 3.65 (s, 1H). ¹³C NMR (101 MHz, DMSO) δ 168.26, 166.93, 154.28, 147.96, 145.04, 134.02, 131.16, 130.73, 129.40, 127.69, 125.36, 124.98, 115.87, 113.59, 106.21, 93.07, 79.12, 78.66, 56.57, 39.57. FT-IR (KBr, cm-1): 3436.8 (N-H stretch), 3295.9 (alkyne C-H stretch), 2927.9 (aromatic C-H), 2118.1 (alkyne -C≡C- stretch), 1621.2 (aromatic C=C),

1370.8 (C-N stretch), 1224.7 (C-O stretch), 810.5 (C-Cl stretch), 770.9 (C-Cl stretch), 626.9 (C-Br stretch). ESI-HRMS: Calculated for $C_{19}H_{12}BrCl_2N_3OS = 480.9238$; [M+H]⁺ found = 479.9334.

29. (E)-2-(2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(4-bromophenyl)thiazole (29)

Light reddish brown solid, Yield: 65%. M.P: 208-210°C. 1H NMR (400 MHz, DMSO) δ 12.38 (s, 1H), 8.26 (s, 1H), 7.85 (d, J = 2.6 Hz, 1H), 7.81 (dd, J = 8.7, 4.4 Hz, 2H), 7.67 (d, J = 8.7 Hz, 1H), 7.59 (d, J = 8.6 Hz, 1H), 7.56 (s, 1H), 7.42 (s, 1H), 7.14 (d, J = 8.9 Hz, 1H), 4.93 (s, 2H), 3.67 (s, 1H). 13C NMR (101 MHz, CDCl3) δ 168.22, 154.19, 149.22, 146.77, 133.70, 132.77, 131.66, 129.94, 127.69, 125.39, 121.60, 120.75, 116.03, 113.58, 104.97, 91.97, 79.14, 78.73, 56.15, 39.52, 18.65. FT-IR (KBr, cm-1): 3412.9 (N-H stretch), 3209.7 (alkyne C-H stretch), 2874.5 (aromatic C-H), 2116.7 (alkyne -C=C- stretch), 1625.6 (aromatic C=C), 1364.5 (C-N stretch), 1225.0 (C-O stretch), 626.4 (C-Br stretch). Calculated for C19H13Br2N3OS = 490.9126; [M+H] + found = 489.9218.

30. (E)-4-(2-(2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazol-4-yl)benzonitrile (30)

Light grey solid, Yield: 65%. M.P: 199-201°C. ¹H NMR (400 MHz, DMSO) δ 12.37 (s, 1H), 8.26 (s, 1H), 8.01 (d, J = 8.6 Hz, 2H), 7.87 (d, J = 15.8 Hz, 3H), 7.61 (s, 1H), 7.53 (d, 1H), 7.12 (d, J = 9.0 Hz, 1H), 4.91 (s, 2H), 3.64 (s, 1H). ¹³C NMR (101 MHz, DMSO) δ 168.41, 154.21, 148.95, 138.75, 135.27, 132.80, 128.53, 127.05, 126.26, 125.38, 119.13, 116.04, 113.61, 109.72, 107.91, 79.12, 78.75, 56.59. FT-IR (KBr, cm-1): 3406.3 (N-H stretch), 3265.2 (alkyne C-H stretch), 3112.8 (aromatic C-H), 2226.2 (C=N stretch), 2115 (alkyne -C=C- stretch), 1624.9 (aromatic C=C), 1564.3 (C=N stretch), 1270.1 (C-N stretch), 1226.5 (C-O stretch), 631.6 (C-Br stretch). Calculated for C₂₀H₁₃BrN₄OS = 437.9974; [M+H]⁺ found = 437.0069.

31. (E)-2-(2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(p-tolyl)thiazole (31)

White solid, Yield: 70%. M.P: 191-193°C. ¹H NMR (400 MHz, DMSO) δ 8.29 (s, 1H), 7.86 (s, 1H), 7.72 (d, J = 6.9 Hz, 2H), 7.54 (d, J = 8.9 Hz, 1H), 7.26 (s, 1H), 7.21 (d, J = 8.1 Hz, 2H), 7.14 (d, J = 8.9 Hz, 1H), 4.92 (s, 2H), 3.67 (s, 1H), 2.31 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 168.12, 166.71, 154.27, 147.87, 137.79, 135.90, 132.91, 130.80, 128.95, 127.88, 127.11, 125.15, 115.97, 113.63, 103.35, 90.63, 79.14, 78.67, 56.60, 48.71, 39.52, 21.00. FT-IR (KBr, cm-1): 3407.2 (N-H stretch), 3236 (alkyne C-H stretch), 2917 (aromatic C-H), 2117.6 (alkyne -C=C- stretch), 1621.5 (aromatic C=C), 1507.4 (C=N stretch), 1270.4 (C-N stretch), 1228 (C-O stretch), 628.2 (C-Br stretch). Calculated for C20H16BrN3OS = 427.0178; [M+H] + found = 426.0272.

32. (E)-2-(2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(4-methoxyphenyl)thiazole (32)

Pale yellow solid, Yield: 60%. M.P: 184-187°C. ¹H NMR (400 MHz, DMSO) δ 12.00 (s, 1H), 8.27 (s, 1H), 7.90 (d, J = 7.6 Hz, 3H), 7.60 (d, J = 9.0 Hz, 1H), 7.13 (s, 1H), 7.12 (d, J = 2.6 Hz, 2H), 6.89 (d, J = 9.0 Hz, 1H), 4.92 (s, 2H), 3.87 (s, 1H), 3.71 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 168.10, 166.65, 159.17, 154.32, 147.72, 135.96, 132.94, 129.42, 127.24, 125.33, 116.10, 114.18, 113.64, 109.33, 102.18, 89.70, 79.18, 78.75, 56.64, 55.32, 39.52. FT-IR (KBr, cm-1): 3379.4 (N-H stretch), 3285.4 (alkyne C-H stretch), 2832.8 (aromatic C-H), 2120.8 (alkyne -C=C- stretch), 1623.6 (aromatic C=C), 1511.1 (C=N stretch), 1359.9 (C-N stretch), 1228.3 (C-O stretch), 1186.6 (C-O stretch), 634.3 (C-Br stretch). Calculated for C20H16BrN3O2S = 443.0128; [M+H] + found = 442.0218.

C. Spectra (Mass, ¹H and ¹³C NMR, and FT-IR) of compounds from 1 to 32

Mass spectrum of 2-(Prop-2-yn-1-yloxy)benzaldehyde (1)

¹H NMR spectrum of 2-(Prop-2-yn-1-yloxy)benzaldehyde (1)

¹³C NMR spectrum of 2-(Prop-2-yn-1-yloxy)benzaldehyde (1)

FT-IR spectrum of 2-(Prop-2-yn-1-yloxy)benzaldehyde (1)

Mass spectrum of 3-Ethoxy-4-(prop-2-yn-1-yloxy)benzaldehyde (2)

¹H NMR spectrum of 3-Ethoxy-4-(prop-2-yn-1-yloxy)benzaldehyde (2)

¹³C NMR spectrum of 3-Ethoxy-4-(prop-2-yn-1-yloxy)benzaldehyde (2)

FT-IR spectrum of 3-Ethoxy-4-(prop-2-yn-1-yloxy)benzaldehyde (2)

Mass spectrum of 5-Bromo-2-(prop-2-yn-1-yloxy)benzaldehyde (3)

¹³C NMR spectrum of 5-Bromo-2-(prop-2-yn-1-yloxy)benzaldehyde (3)

FT-IR spectrum of 5-Bromo-2-(prop-2-yn-1-yloxy)benzaldehyde (3)

Mass spectrum of (E)-2-(2-(Prop-2-yn-1-yloxy)benzylidene)hydrazine-1-carbothioamide (4)

¹H NMR spectrum of (*E*)-2-(2-(Prop-2-yn-1-yloxy)benzylidene)hydrazine-1-carbothioamide (4)

¹³C NMR of (*E*)-2-(2-(Prop-2-yn-1-yloxy)benzylidene)hydrazine-1-carbothioamide (4)

FT-IR spectrum of (*E*)-2-(2-(Prop-2-yn-1-yloxy)benzylidene)hydrazine-1-carbothioamide (4)

Mass spectrum of (*E*)-2-(3-Ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazine-1-carbothioamide (5)

¹H NMR spectrum of (*E*)-2-(3-Ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazine-1-carbothioamide (5)

¹³C NMR spectrum of (*E*)-2-(3-Ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazine-1-carbothioamide (5)

FT-IR spectrum of (*E*)-2-(3-Ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazine-1-carbothioamide (5)

Mass spectrum of (*E*)-2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazine-1-carbothioamide (6)

¹H NMR spectrum of (*E*)-2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazine-1-carbothioamide (6)

¹³C NMR spectrum of (*E*)-2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazine-1-carbothioamide (6)

FT-IR spectrum of (*E*)-2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazine-1-carbothioamide (6)

Mass spectrum of (*E*)-4-Phenyl-2-(2-(2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (7)

¹H NMR spectrum of (*E*)-4-Phenyl-2-(2-(2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (7)

¹³C NMR spectrum of (*E*)-4-Phenyl-2-(2-(2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (7)

FT-IR spectrum of (*E*)-4-Phenyl-2-(2-(2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (7)

Mass spectrum of (*E*)-4-(4-Fluorophenyl)-2-(2-(2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (8)

¹H NMR spectrum of (*E*)-4-(4-Fluorophenyl)-2-(2-(2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (8)

¹³C NMR spectrum of (*E*)-4-(4-Fluorophenyl)-2-(2-(2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (8)

FT-IR spectrum of (*E*)-4-(4-Fluorophenyl)-2-(2-(2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (8)

¹H NMR spectrum of (*E*)-4-(4-Chlorophenyl)-2-(2-(2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (9)

¹³C NMR spectrum of (*E*)-4-(4-Chlorophenyl)-2-(2-(2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (9)

FT-IR spectrum of (*E*)-4-(4-Chlorophenyl)-2-(2-(2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (9)

Mass spectrum of (*E*)-4-(3,4-Dichlorophenyl)-2-(2-(2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (10)

¹H NMR spectrum of (*E*)-4-(3,4-Dichlorophenyl)-2-(2-(2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (10)

 $^{13}{\rm C~NMR~spectrum~of~(\it E)-4-(3,4-Dichlorophenyl)-2-(2-(2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl) thiazole~(10)}$

 $\label{eq:FT-IR} FT-IR\ spectrum\ of\ (E)-4-(3,4-Dichlorophenyl)-2-(2-(2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl) thiazole\ (10)$

Mass spectrum of (*E*)-4-(4-Bromophenyl)-2-(2-(2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (11)

¹H NMR spectrum of (*E*)-4-(4-Bromophenyl)-2-(2-(2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (11)

¹³C NMR spectrum of (*E*)-4-(4-Bromophenyl)-2-(2-(2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (11)

FT-IR spectrum of (*E*)-4-(4-Bromophenyl)-2-(2-(2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (11)

Mass spectrum of (*E*)-4-(4-Nitrophenyl)-2-(2-(2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (12)

¹H NMR spectrum of (*E*)-4-(4-Nitrophenyl)-2-(2-(2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (12)

 $^{13}{\rm C~NMR~spectrum~of~(\it E)-4-(4-Nitrophenyl)-2-(2-(2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole~(12)}$

FT-IR spectrum of (*E*)-4-(4-Nitrophenyl)-2-(2-(2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (12)

Mass spectrum of (*E*)-4-(2-(2-(2-(Prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazol-4-yl)benzonitrile (13)

¹H NMR spectrum of (*E*)-4-(2-(2-(2-(Prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazol-4-yl)benzonitrile (13)

¹³C NMR spectrum of (*E*)-4-(2-(2-(2-(Prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazol-4-yl)benzonitrile (13)

FT-IR spectrum of (*E*)-4-(2-(2-(2-(Prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazol-4-yl)benzonitrile (13)

Mass spectrum of (E)-2-(2-(2-(Prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(p-tolyl)thiazole (14)

¹H NMR spectrum of (*E*)-2-(2-(2-(Prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(p-tolyl)thiazole (14)

¹³NMR spectrum of (*E*)-2-(2-(2-(Prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(p-tolyl)thiazole (14)

FT-IR spectrum of (*E*)-2-(2-(2-(Prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(p-tolyl)thiazole (14)

Mass spectrum of (*E*)-4-(4-Methoxyphenyl)-2-(2-(2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (15)

¹³C NMR spectrum of (*E*)-4-(4-Methoxyphenyl)-2-(2-(2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (15)

FT-IR spectrum of (*E*)-4-(4-Methoxyphenyl)-2-(2-(2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (15)

Mass spectrum of (*E*)-2-(2-(3-Ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-phenylthiazole (16)

210 200 190 180 170 150 140 120 110 100 -10

FT-IR spectrum of (*E*)-2-(2-(3-Ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-phenylthiazole (16)

Mass spectrum of (*E*)-2-(2-(3-Ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(4-fluorophenyl)thiazole (17)

¹H NMR spectrum of (*E*)-2-(2-(3-Ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(4-fluorophenyl)thiazole (17)

¹³C NMR spectrum of (*E*)-2-(2-(3-Ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(4-fluorophenyl)thiazole (17)

FT-IR spectrum of (*E*)-2-(2-(3-Ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(4-fluorophenyl)thiazole (17)

Mass spectrum of (*E*)-4-(4-Chlorophenyl)-2-(2-(3-ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (18)

 $^{1}\mathrm{H}\ \mathrm{NMR}\ \mathrm{spectrum}\ \mathrm{of}\ (E) - 4 - (4 - \mathrm{Chlorophenyl}) - 2 - (2 - (3 - \mathrm{ethoxy} - 4 - (\mathrm{prop} - 2 - \mathrm{yn} - 1 - \mathrm{yloxy}) \mathrm{benzylidene}) \mathrm{hydrazinyl}) \mathrm{thiazole}\ (18)$

FT-IR spectrum of (*E*)-4-(4-Chlorophenyl)-2-(2-(3-ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (18)

Mass spectrum of (*E*)-4-(3,4-Dichlorophenyl)-2-(2-(3-ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (19)

¹H NMR spectrum of (*E*)-4-(3,4-Dichlorophenyl)-2-(2-(3-ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (19)

¹³C NMR spectrum of (*E*)-4-(3,4-Dichlorophenyl)-2-(2-(3-ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (19)

FT-IR spectrum of (*E*)-4-(3,4-Dichlorophenyl)-2-(2-(3-ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (19)

Mass spectrum of (*E*)-4-(4-Bromophenyl)-2-(2-(3-ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (20)

¹H NMR spectrum of (*E*)-4-(4-Bromophenyl)-2-(2-(3-ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (20)

¹³C NMR spectrum of (*E*)-4-(4-Bromophenyl)-2-(2-(3-ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (20)

FT-IR spectrum of (*E*)-4-(4-Bromophenyl)-2-(2-(3-ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazole (20)

Mass spectrum of (*E*)-2-(2-(3-Ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(4-nitrophenyl)thiazole (21)

¹H NMR spectrum of (*E*)-2-(2-(3-Ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(4-nitrophenyl)thiazole (21)

FT-IR spectrum of (*E*)-2-(2-(3-Ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(4-nitrophenyl)thiazole (21)

Mass spectrum of (*E*)-4-(2-(2-(3-Ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazol-4-yl)benzonitrile (22)

¹H NMR spectrum of (*E*)-4-(2-(2-(3-Ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazol-4-yl)benzonitrile (22)

¹³C NMR spectrum of (*E*)-4-(2-(2-(3-Ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazol-4-yl)benzonitrile (22)

FT-IR spectrum of (*E*)-4-(2-(2-(3-Ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazol-4-yl)benzonitrile (22)

Mass spectrum of (*E*)-2-(2-(3-Ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(p-tolyl)thiazole (23)

¹H NMR spectrum of (*E*)-2-(2-(3-Ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(p-tolyl)thiazole (23)

¹³C NMR spectrum of (*E*)-2-(2-(3-Ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(p-tolyl)thiazole (23)

FT-IR spectrum of (*E*)-2-(2-(3-Ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(p-tolyl)thiazole (23)

Mass spectrum of (*E*)-2-(2-(3-Ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(4-methoxyphenyl)thiazole (24)

¹H NMR spectrum of (*E*)-2-(2-(3-Ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(4-methoxyphenyl)thiazole (24)

¹³C NMR spectrum of (*E*)-2-(2-(3-Ethoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(4-methoxyphenyl)thiazole (24)

Mass spectrum of (*E*)-2-(2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-phenylthiazole (25)

¹H NMR spectrum of (*E*)-2-(2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-phenylthiazole (25)

¹³C NMR spectrum of (*E*)-2-(2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-phenylthiazole (25)

FT-IR spectrum of (*E*)-2-(2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-phenylthiazole (25)

Mass spectrum of (*E*)-2-(2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(4-fluorophenyl)thiazole (26)

¹³C NMR spectrum of (*E*)-2-(2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(4-fluorophenyl)thiazole (26)

FT-IR spectrum of (*E*)-2-(2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(4-fluorophenyl)thiazole (26)

¹H NMR spectrum of (*E*)-2-(2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(4-chlorophenyl)thiazole (27)

¹³C NMR spectrum of (*E*)-2-(2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(4-chlorophenyl)thiazole (27)

FT-IR spectrum of (*E*)-2-(2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(4-chlorophenyl)thiazole (27)

Mass spectrum of (*E*)-2-(2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(3,4-dichlorophenyl)thiazole (28)

¹H NMR spectrum of (*E*)-2-(2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(3,4-dichlorophenyl)thiazole (28)

¹³C NMR spectrum of (*E*)-2-(2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(3,4-dichlorophenyl)thiazole (28)

FT-IR spectrum of (*E*)-2-(2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(3,4-dichlorophenyl)thiazole (28)

Mass spectrum of (*E*)-2-(2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(4-bromophenyl)thiazole (29)

¹H NMR spectrum of (*E*)-2-(2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(4-bromophenyl)thiazole (29)

¹³C NMR spectrum of (*E*)-2-(2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(4-bromophenyl)thiazole (29)

FT-IR spectrum of (*E*)-2-(2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(4-bromophenyl)thiazole (29)

Mass spectrum of (*E*)-4-(2-(2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazol-4-yl)benzonitrile (30)

¹H NMR spectrum of (*E*)-4-(2-(2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazol-4-yl)benzonitrile (30)

 $^{13}{\rm C~NMR~spectrum~of~(\it E)-4-(2-(2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazol-4-yl)benzonitrile~(30)}$

FT-IR spectrum of (*E*)-4-(2-(2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)thiazol-4-yl)benzonitrile (30)

Mass spectrum of (*E*)-2-(2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(p-tolyl)thiazole (31)

 $^{13}{\rm C~NMR~spectrum~of~(\it E)-2-(2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(p-tolyl)thiazole~(31)}$

FT-IR spectrum of (*E*)-2-(2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(p-tolyl)thiazole (31)

Mass spectrum of (*E*)-2-(2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(4-methoxyphenyl)thiazole (32)

$^{13} C \ NMR \ spectrum \ of \ (E) - 2 - (2 - (5 - Bromo - 2 - (prop - 2 - yn - 1 - yloxy) benzylidene) hydrazinyl) - 4 - (4 - methoxyphenyl) thiazole \ (32)$

FT-IR spectrum of (*E*)-2-(2-(5-Bromo-2-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(4-methoxyphenyl)thiazole (32)

Table S1. Library of acetylene containing 2-(2-hydrazinyl)thiazole derivatives used in the present investigation

Table S2. Pharmacokinetic analysis and *in vitro* mycobacterial analysis results of acetylene containing 2-(2-hydrazinyl)thiazole derivatives.

		Ι	.ipinski's R	cule of 5		V	eber Rule	% Inhibition ± SD	
Code.	Log P	MW	H-bond donors	H-bond acceptors A	Total no. of violations	TPSA (Å ²)	Number of rotatable bonds	100 µg/ml	50 μg/ml
1.	1.90	160.17	0	2	0	26.30	3	-	39.29 ± 1.17
2.	1.91	204.23	0	3	0	35.54	5	8.08 ± 0.24	7.73 ± 0.23
3.	2.68	239.07	0	2	0	26.30	3	50.85 ± 1.52	48.71 ± 1.46
4.	2.05	233.29	3	4	0	59.65	5	-	46.75 ± 1.40
5.	2.06	277.34	3	5	0	68.88	7	77.75 ± 2.33	74.58 ± 2.23
6.	2.84	312.19	3	4	0	59.65	5	56.86 ± 1.70	51.21 ± 1.53
7.	4.13	333.41	1	4	0	46.52	6	-	51.66 ± 1.54
8.	4.29	351.40	1	4	0	46.52	6	-	38.01 ± 1.14
9.	4.80	367.85	1	4	0	46.52	6	-	50.81 ± 1.52
10.	5.41	402.29	1	4	1	46.52	6	-	52.00 ± 1.56

11.	4.93	412.31	1	4	0	46.52	6	-	49.13 ± 1.47
12.	4.08	378.41	1	7	0	92.34	7	-	29.06 ± 0.87
13.	3.88	358.42	1	5	0	70.31	6	-	54.33 ± 1.62
14.	4.57	347.44	1	4	0	46.52	6	-	38.18 ± 1.14
15.	4.18	363.44	1	5	0	55.75	7	-	10.26 ± 0.30
16.	4.14	377.46	1	5	0	55.75	8	48.71 ± 1.46	40.49 ± 1.21
17.	4.30	395.45	1	5	0	55.75	8	11.41 ± 0.34	2.06 ± 0.06
18.	4.82	411.90	1	5	0	55.75	8	17.79 ± 0.53	6.36 ± 0.19
19.	5.42	446.35	1	5	1	55.75	8	7.21 ± 0.21	2.38 ± 0.07
20.	4.95	456.36	1	5	0	55.75	8	12.13 ± 0.36	7.35 ± 0.22
21.	4.10	422.46	1	8	0	101.58	9	50.85 ± 1.52	48.74 ± 1.46
22.	3.89	402.47	1	6	0	79.54	8	57.18 ± 1.71	50.86 ± 1.52
23.	4.59	391.49	1	5	0	55.75	8	10.49 ± 0.31	8.72 ± 0.26
24.	4.20	407.49	1	6	0	64.98	9	32.98 ± 0.98	5.64 ± 0.16
25.	4.91	412.31	1	4	0	46.52	6	66.22 ± 1.98	61.86 ± 1.85
26.	5.07	430.30	1	4	1	46.52	6	57.7 ± 1.73	50.7 ± 1.52

27	5 50	11075	1	4	1	16 50	(52 (0 + 1 59	20.15 + 1.14
27.	5.59	446.75	1	4	1	46.52	6	52.69 ± 1.58	38.15 ± 1.14
28.	6.20	481.19	1	4	1	46.52	6	50.16 ± 1.50	43.8 ± 1.31
29.	5.72	491.20	1	4	1	46.52	6	37.24 ± 1.11	27.05 ± 0.81
30.	4.67	437.32	1	5	0	70.31	6	48.69 ± 1.46	43.73 ± 1.31
31.	5.36	426.33	1	4	1	46.52	6	56.32 ± 1.68	54.86 ± 1.64
32.	4.97	442.33	1	5	0	55.75	7	48.68 ± 1.46	43.69 ±1.31
INH	-0.96	137.14	3	4	0	68.01	1	> 999	% *
RIF	2.62	822.95	6	16	3	220.16	5	> 999	% *

Note: Pharmacokinetic analyses are obtained from the online server Molinspiration (<u>http://www.molinspiration.com</u>). * at 2 µg/ml.

Code	Absorption		L		Distri	bution		Metabolism	Excretion
	Log S (log mol/L)	Caco-2 perm. (log Papp in 10 ⁻⁶ cm/s)	Int. absorptio n. (% absorbed)	VDss (log L/kg)	Fraction. Unbound (Fu)	BBB perm (log BB)	BBB predicted		Total clearance (logml/min/kg)
1.	-1.645	1.65	97.94	0.042	0.341	0.159	Yes	CYP1A2 inhibitor	0.274
2.	-2.604	1.3	99.692	0.088	0.337	0.03	Yes	CYP1A2 inhibitor	0.402
3.	-2.56	1.545	96.684	0.04	0.354	0.247	Yes	CYP1A2 inhibitor	0.234
4.	-2.579	1.216	87.469	-0.116	0.377	-0.22	No	CYP1A2 inhibitor	-0.021
5.	-2.418	0.719	73.221	-0.462	0.383	-0.438	No	-	-0.048
6.	-2.852	1.268	93.642	-0.217	0.357	-0.133	No	CYP1A2 inhibitor	-0.108
7.	-4.788	1.439	92.889	0.211	0.002	0.268	Yes	CYP3A4, substrate. CYP1A2, CYP2C19, CYP2C9, CYP3A4 inhibitor	0.376
8.	-4.872	1.332	92.508	0.212	0.046	0.093	No	CYP3A4 substrate. CYP1A2, CYP2C19, CYP2C9, CYP3A4 inhibitor	0.113
9.	-5.334	1.291	91.44	0.265	0.002	0.219	No	CYP3A4 substrate. CYP1A2, CYP2C19, CYP2C9, CYP3A4 inhibitor	0.244
10.	-5.912	1.28	91.164	0.361	0	0.196	No	CYP3A4 substrate. CYP1A2, CYP2C19, CYP2C9, CYP3A4	0.374

Table S3. ADME	properties of acetyl	lene containing 2-	(2-hvdraziny	l)thiazole derivatives.
			(

								inhibitor	
11.	-5.422	1.288	91.373	0.285	0	0.218	No	CYP3A4 substrate. CYP1A2, CYP2C19, CYP2C9, CYP3A4 inhibitor	0.223
12.	-5.411	0.529	91.021	0.102	0	-0.794	No	CYP3A4 substrate. CYP1A2, CYP2C19, CYP2C9, CYP3A4 inhibitor	0.28
13.	-4.896	0.672	93.917	0.19	0	-0.447	No	CYP3A4 substrate. CYP1A2, CYP2C19, CYP2C9, CYP3A4 inhibitor	0.342
14.	-5.051	1.293	92.898	0.296	0.014	0.232	No	CYP3A4 substrate. CYP1A2, CYP2C19, CYP2C9, CYP3A4 inhibitor	0.318
15.	-4.905	1.291	93.917	0.303	0.014	-0.03	No	CYP3A4 substrate. CYP1A2, CYP2C19, CYP2C9, CYP3A4 inhibitor	0.294
16.	-5.325	1.086	93.591	0.35	0.037	0.2	No	CYP3A4 substrate. CYP1A2, CYP2C19, CYP2C9, CYP3A4 inhibitor	0.345
17.	-5.216	1.118	93.191	0.357	0.095	0.025	No	CYP3A4 substrate. CYP1A2, CYP2C19, CYP2C9, CYP3A4 inhibitor	0.082
18.	-5.772	1.077	92.095	0.405	0.04	0.152	No	CYP3A4 substrate. CYP1A2, CYP2C19, CYP2C9, CYP3A4 inhibitor	0.213
19.	-6.193	1.068	91.819	0.498	0.027	0.142	No	CYP3A4 substrate. CYP1A2, CYP2C19, CYP2C9, CYP3A4	0.343

								inhibitor	
20.	-5.844	1.074	92.028	0.426	0.037	0.15	No	CYP3A4 substrate. CYP1A2, CYP2C19, CYP2C9, CYP3A4 inhibitor	0.192
21.	-6.039	0.766	93.403	0.18	0	-0.83	No	CYP3A4 substrate. CYP2C19, CYP2C9, CYP3A4 inhibitor	0.249
22.	-5.386	1.151	94.572	0.33	0.034	-0.501	No	CYP3A4 substrate. CYP1A2, CYP2C19, CYP2C9, CYP3A4 inhibitor	0.312
23.	-5.538	1.079	93.554	0.433	0.05	0.165	No	CYP3A4 substrate. CYP1A2, CYP2C19, CYP2C9, CYP3A4 inhibitor	0.287
24.	-5.221	1.092	94.599	0.444	0.057	-0.097	No	CYP3A4 substrate. CYP1A2, CYP2C19, CYP2C9, CYP3A4 inhibitor	0.263
25.	-5.4	1.284	91.396	0.273	0.006	0.221	No	CYP3A4 substrate. CYP1A2, CYP2C19, CYP2C9, CYP3A4 inhibitor	0.283
26	-5.373	1.316	91.015	0.262	0.058	0.046	No	CYP3A4 substrate. CYP1A2, CYP2C19, CYP2C9, CYP3A4 inhibitor	0.021
27	-5.941	1.275	89.947	0.324	0.007	0.173	No	CYP3A4 substrate. CYP1A2, CYP2C19, CYP2C9, CYP3A4 inhibitor	0.152
28	-6.495	1.264	89.67	0.413	0	0.15	No	CYP3A4 substrate. CYP1A2, CYP2C19, CYP2C9, CYP3A4 inhibitor	0.282

29	-6.023	1.273	89.88	0.344	0.003	0.171	No	CYP3A4 substrate. CYP1A2, CYP2C19, CYP2C9, CYP3A4 inhibitor	0.13
30	-5.527	0.683	92.424	0.24	0.005	-0.645	No	CYP3A4 substrate. CYP1A2, CYP2C19, CYP2C9, CYP3A4 inhibitor	0.25
31	-5.674	1.277	91.405	0.356	0.019	0.186	No	CYP3A4 substrate. CYP1A2, CYP2C19, CYP2C9, CYP3A4 inhibitor	0.226
32	-5.405	1.276	92.423	0.347	0.024	-0.077	No	CYP3A4 substrate. CYP1A2, CYP2C19, CYP2C9, CYP3A4 inhibitor	0.201
INH	-2.024	0.695	96.452	0.053	0.776	-0.002	No	-	0.703
RIF	-2.914	-0.219	41.095	1.49	0.209	-2.577	No	-	-0.624

Note: ADME properties were obtained from online servers pkCSM (http://biosig.unimelb.edu.au/pkcsm/) and SwissADME

(http://www.swissadme.ch/).

Table S4. Single-crystal XRD data.

	Compound 4	Compound 7
CCDC Number	2038796	2038797
Empirical formula	$C_{22}H_{22}N_6O_2S_2$	$C_{18}H_{14}N_4OS$
Formula weight	466.58	334.39
Temperature/K	298	298
Crystal system	triclinic	monoclinic
Space group	P-1	P2/n
a/Å	8.6009(5)	10.6038(7)
b/Å	10.6365(7)	9.9316(7)
c/Å	13.6233(9)	16.1177(11)
a/°	95.201(5)	90
β/°	95.934(5)	93.716(7)
γ/°	107.575(5)	90
Volume/Å ³	1171.95(12)	1693.8(2)
Z	2	4

ρ _{calc} g/cm ³	1.322	1.311
μ/mm ⁻¹	0.258	0.203
F(000)	488.0	696.0
Crystal size/mm ³	$0.4 \times 0.38 \times 0.24$	$0.64 \times 0.58 \times 0.26$
Radiation	MoKa ($\lambda = 0.71073$)	MoK α ($\lambda = 0.71073$)
20 range for data collection/°	6.24 to 58.88	6.52 to 58.72
Index ranges	$-11 \le h \le 11, -13 \le k \le 14, -18 \le l \le 18$	$-13 \le h \le 11, -13 \le k \le 12, -21 \le 1 \le$ 20
Reflections collected	12789	9712
Independent reflections	5520 [$R_{int} = 0.0284$, $R_{sigma} = 0.0509$]	3990 [Rint = 0.0198, Rsigma = 0.0242]
Goodness-of-fit on F ²	0.981	1.033

Table S5. Summary of active compounds % inhibition at 50 μ g/ml.

 Table S6. In silico studies of active compounds with KasA protein.

Code		In silico studies with KasA protein						
	Binding	Binding const.	Interacting amino acids					
	Affinity	(Ki) (µM)						
	(kcal/mol)							
1	-6.1	33.39686	GLY403, GLY318, VAL278, PRO280, ALA287, ALA321, HIS311, PHE402,					
			PHE404					
2	-5.9	46.82409	THR315, ILE317, ALA279, MET213, ALA215					
3	-5.0	214.2428	ALA215, ILE317, PRO280, MET213, VAL278, PHE404, ALA279					
4	-5.6	77.73472	MET213, ILE317, ALA279, ILE317, MET213, ALA215					
5	-5.2	152.8067	THR315, ILE317, HIS311, ALA215, ALA279					
6	-5.5	92.0443	MET213, ARG214, ILE317, PRO280, PHE404, ALA215, ALA279					
7	-6.4	20.11685	GLY39, GLU40, LEU371					
8	-6.6	14.34816	MET213, ILE317, ALA215, ALA279					
9	-6.5	16.9894	GLY39, GLU40, HIS44, LEU371					

10	-7.7	2.236638	GLU374, ASN372, GLU224, GLY39, GLU40, PRO369, LEU371
11	-6.7	12.11754	MET213, VAL278, ILE317, MET277, ALA215, ALA279
12	-6.4	20.11685	MET213, ILE317, PHE404, ALA215, ALA279
13	-6.9	8.642724	TYR373, ALA38, GLY39, GLU40, LEU371
	-6.1	33.39686	TYR373, GLY39, LEU371
14	-6.9	8.642724	MET213, ARG214, ILE317, ALA279, PRO280, PHE404
15	-6.8	10.2337	GLY387, GLY39, TYR373, GLU40, ASN372, LEU371
	-6.4	20.11685	GLY387, GLY39, ASN372, GLU224, ARG225, ALA38, LEU371
16	-6.5	16.9894	GLU40, GLU224, GLY39, LEU371
17	-6.8	10.2337	GLU40, ASN372, GLY39, TYR373, GLU374, LEU371
18	-6.5	16.9894	GLY39, GLU40, LEU371
19	-7.2	5.20601	MET213, ARG214, MET212, HIS311, PHE404, ALA215, ALA279, ILE317
20	-6.9	8.642724	TYR373, GLY39, GLU40, LEU371, HIS44, ALA386
21	-6.7	12.11754	MET213, ARG214, ILE317, HIS311, PHE404, ALA215, ALA279
22	-6.9	8.642724	GLU40, PRO27
23	-6.6	14.34816	GLY39, SER41, ASN372, LEU371

24	-6.7	12.11754	VAL19, SER97, ASP28, LYS260, LEU262
25	-6.8	10.2337	ASN372, GLU40, LEU371, PRO369
26	-6.9	8.642724	GLU224, GLU224, GLY387, GLU40, LEU371, ARG225
27	-6.5	16.9894	GLU40, LEU371, PRO369
28	-7.0	7.299091	ASN372, GLU40, LEU371, PRO369
29	-6.6	14.34816	GLU40, LEU371
30	-6.9	8.642724	TYR373, GLU40, LEU371
31	-6.7	12.11754	GLU40, LEU371, PRO369
32	-6.9	8.642724	GLU40, LEU371, ASN372
INH	-6.1	33.39686	VAL 278, GLY 403, HIS 311, PRO 280
RIF	-7.8	1.888921	GLU 224, LEU 371

Table S7. Summary of the analysis of variance (ANOVA) data at 50 $\mu g/ml.$

SUMMARY						
Groups	Count	Sum	Average	Variance		
Trial 1	32	1178.15	36.81719	396.4437		
Trial 2	32	1145.17	35.78656	382.4966		
Trail 3	32	1206.55	37.70469	413.8735		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	58.97651	2	29.48825	0.074165	0.928574	3.094337
Within Groups	36977.23	93	397.6046			
Total	37036.2	95				

Table S8. Summary of the analysis of variance (ANOVA) data at 100 $\mu g/ml.$

SUMMARY						
Groups	Count	Sum	Average	Variance		
Trail 1	21	859.99	40.9519	454.4107		
Trail 2	21	877.49	41.78524	465.459		
Trail 3	21	843.35	40.15952	437.3954		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	27.75681	2	13.87841	0.030676	0.969805	3.150411
Within Groups	27145.3	60	452.4217			
Total	27173.06	62				

Fig. S1. Reported biological compounds containing thiazole and acetylene pharmacophores.