Electronic Supplementary Material

Ratiometric fluorescent sensors for nitrite detection in the

environment based on carbon dot/ Rhodamine B systems

Huihui Tao,^{a,b} Zhao Zhang,^{a,b} Qiao Cao,^b Lingfei Li,^c Shihao Xu,^c Changlong Jiang,^c

Yucheng Li,^{*a} Yingying Liu^{*b}

^a School of Resources and Environmental Engineering, Anhui University, Anhui province, Hefei, 230601, P. R. China. Email: li-yucheng@163.com

^b Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China. Email: yyliu@iim.ac.cn

^c Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.

Contents

Fig. S1 The XPS spectra of BCDs	S1
Fig. S2 Fluorescence spectra of BCDs, RhB and the probe	S1
Fig. S3 Stability of colorimetric fluorescent probe	S2
Fig. S4 The response to NO ₂ ⁻	S3
Fig. S5 Optimal fluorescence intensity ratio	S3
Fig. S6 Fluorescence spectra of ratiometric fluorescent probe to NO ₂ ⁻	S4
Fig. S7 The response time of ratiometric fluorescent probe	S4
Fig. S8 The masking effect of EDTA on Hg ²⁺	S4
Fig. S9 Influence of ion strength on fluorescence intensity	S5
Fig. S10 The absorbance of the BCDs, BCDs+ NO_2^- and the magenta dye	S5
Fig. S11 TEM image of BCDs+NO ₂	S6
Fig. S12 Test paper detect NO ₂ ⁻	S6
Fig. S13 The fluorescent test paper without or with Nafion solution	S6
Fig. S14 Effect of Nafion on ratiometric fluorescent probe	S7
Fig. S15 The commercial test papers detect NO ₂ ⁻	S7
Table S1 Ratiometric fluorescent probe to NO ₂ ⁻	S8
Table S2 Comparison different CDs fluorescent probes	S8
Table S3 Detection of real samples using different methods	S9
Table S4 Different methods for the detection of NO ₂ -	S9

Fig. S1 (a) Broad range XPS spectra of BCDs; (b) The XPS C1s; (c) the XPS N1s and (d) the XPS O1s of BCDs.

Fig. S2 Fluorescence emission spectra (λ_{ex} = 365 nm) of BCDs (the blue curve), RhB (the black curve) and mixing BCDs and RhB (the red curve), respectively.

Fig. S3 (a) Zeta Potential of BCDs and $BCDs+NO_2^-$; (b) Photostability of ratiometric fluorescent probe with exposed to 365 nm UV lamp (I_{466} and I_{580} are the fluorescence intensities of BCDs and RhB); (c) Effect of temperature on ratiometric fluorescent probe.

Fig. S4 The fluorescent emission spectra of RhB with the addition of NO₂⁻.

Fig. S5 Fluorescence spectra of the ratiometric fluorescent probe with the addition of NO_2^- . The initial fluorescence intensities of BCDs and RhB were adjusted to a ratio of (a) 3/1 and (b) 5/1. The insets show the corresponding fluorescent photos under a 365 nm UV lamp.

Fig. S6 Fluorescence spectra of NO_2^- with a concentration of 0 to 250 nM added to the ratiometric fluorescent probe solution.

Fig. S7 The response time of ratiometric fluorescent probe to 40 μ M NO₂⁻.

Fig. S8 The masking effect of 0.5 mM EDTA on Hg²⁺. (a) Blank. (b) The addition of 40 μ M NO₂⁻. (c) The addition of 400 μ M Hg²⁺. (d) The addition of 400 μ M Hg²⁺ with 0.5 mM EDTA. (e) A further addition of 40 μ M NO₂⁻ in (d).

Fig. S9 Influence of ion strength on fluorescence intensity. Concentration: NO_2^- , 40 μ M; NaCl, 0, 25, 50, 75, 100, 125, 150, 175, 200 mM; PBS pH 3, 30 mM.

Fig. S10 (a) UV-vis spectrum of the BCDs and BCDs+NO₂⁻; (b) UV-vis spectrum of the magenta dye is proportional to the concentration of NO₂⁻. Concentration: NED, 0.15 mM; NO₂⁻, 0 - 40 μ M; PBS pH 3, 30 mM.

Fig. S11 TEM image of BCDs+NO₂⁻.

(a)	(C)
(b)	(d)

Fig. S12 (a) The fluorescent test paper without UV light; (b) The fluorescent test paper with UV light.

Fig. S13 (a) The fluorescent test paper without Nafion solution + 30 μ M NO₂⁻ under UV light; (b) The fluorescent test paper with Nafion solution + 30 μ M NO₂⁻ under UV light.

Fig. S14 Effect of 0.5% Nafion (10 μ L) on BCDs (25 μ L, 60 μ g/mL) and the detection of NO₂⁻ by BCDs.

Fig. S15 Commercial test paper for the detection of NO_2^{-1} in different environmental samples. The standard reference card on the right is provided by the merchant. The photos were taken under indoor light.

Spiked	Found	Recovery	RSD
concentration (nM)	(nM)	(%)	(%)
65	-4.19±0.13	-	-
70	-6.83±0.28	-	-
75	69.02±2.22	92.02	3.21
100	106.31±3.15	106.31	2.96
150	162.91±5.41	108.61	3.32
200	197.36±7.14	98.66	3.62
250	254.32±7.63	101.73	3.00

Table S1 Detection results of nitrite in standard concentration based on fluorescent probe system (n=3).

Table S2 Detection results of nitrite in soil and lake water samples based on standard method and fluorescent probe system.

Sample	Spiked concentration	Found ^a	Recovery (%)	RSD (%)	Standard method ^b	Relative error (%)	
	0	2.12±		2 50	2.19±	2 20	
	0	0.05	-	2.50	0.07	5.30	
	4.43± 101.10 2.60	4.53±	2.26				
Soil	2.5	0.12	101.10	2.09	0.09	2.20	
samples 4.6 6.9	4.6	6.91±	01± 104.40 2.33 16	6.76±	2 17		
	4.0	0.16		2.55	0.15	2.17	
	6.0	9.36±	105.03	2.06	9.23±	1.39	
	0.9	0.19		2.06	0.16		
	0	0.05±	-	2.78	0.05±	0	
	0	0.001			0.001	U	
Lako	0.46	0.50±	07.02	2 02	0.52±	4.00	
Lаке	0.40	0.01	97.83	2.82	0.01	4.00	
samples	0.02	0.97±	100.05	2.85	0.95±	2.06	
	0.92	0.03			0.02		
	1 20	1.42±	99.28	1.17	1.43±	0.70	
	1.38	0.02			0.02	0.70	

^a Concentrations of soil samples and lake water samples are in mg/kg and mg/L, respectively.

^b Standard method of soil samples came from HJ 634-2012; Standard method of lake water came from GB 7493-87.

	Soil E	vtracto	Lake Water		Fish Pond	Gutter
	3011 E2	KITACIS			Water	Water
Sample	6.2	6.2	1.2		F 1	C 1
number	5-2	3-3	L-Z	L-3	L-T	9-1
Fluorescence	4.84±	7.12±	0.74±	0.83±	4.27±	18.97±
method(µM)	0.11	0.18	0.03	0.02	0.12	0.34
Standard	4.97±	7.25±	0.76±	0.86±	4.14±	19.44±
method(µM)	0.14	0.15	0.03	0.05	0.11	0.53
Relative error	2.62	4.00		0.50	2.45	
(%)	2.69	1.83	2.70	3.53	3.15	2.46
Test						
paper						

Table S3 Detection of real samples using different methods.

Table S4 Comparison of the analytical performance of different methods for the

Method	Indicator	Linear range (μM)	LOD (µM)	Reference
Electrochemical	AuNPs-Fe ₂ O ₃	1-1000	0.07	[1]
Colorimetric	Fuorescent probe P-NO ₂ -	0.5-10	0.075	[2]
lon	-	0-86	2.82	[3]
Chromatography				

detection of NO_2^- .

Reference

1 S. H. Kang, P. Pana, H. M. Zhang, G. Z. Wang, Y. X. Wang, C. Zhang, Y. X. Zhang, H. J. Zhao, H. J. Zhou, and W. P. Cai, *Inorg. Chem. Front.*, 2019, **6**, 1432-1441

2 J. Xu, Y. F. Shi, S. S. Yang, J. L. Yang, X. Zhang, L. R. Xu, Z. Bian, Z. H. Xu and B. C. Zhu, *Microchem. J.*, 2021, **169**, 106342-106347.

3 D. Coviello, R. Pascale, R. Ciriello, A. M. Salvi, A. Guerrieri, M. Contursi, L. Scrano, S. A. Bufo, T. R.

I. Cataldi and G. Bianco, *Foods*, 2020, **9**, 1238-1248.