In vitro and in silico studies of SARS-CoV-2 main protease $\mathbf{M}^{\text {pro }}$ inhibitors isolated from Helichrysum bracteatum

Gehad Abdel Wahab, ${ }^{\text {a }}$ Walaa S. Aboelmaaty, ${ }^{\text {a }}$ Mohamed Farid Lahloub, ${ }^{\text {a }}$ and Amal Sallam ${ }^{*}{ }^{\text {a }}$
${ }^{\text {a Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura, } 35516}$ Egypt.
*Corresponding author:
Amal Sallam, Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt. Tel. +201092017949; fax. +20502247496.
E-mail: asallam@mans.edu.eg

Other authors e-mail addresses:

Gehad Abdel Wahab: e-mail: gehadabdelwahab@mans.edu.egor algehadalhaq@yahoo.com.
Walaa S. Aboelmaaty: e-mail: walaa_safwat@mans.edu.egor walaa_m_s@yahoo.com
Mohamed Farid Lahloub: e-mail: mfilah@yahoo.com.

ORCID

Gehad Abdel Wahab: 0000-0001-6424-2445
Walaa S. Aboelmaaty: 0000-0002-7806-7884
Mohamed Farid Lahloub: 0000-0001-6769-3145
Amal Sallam: 0000-0003-3577-2046

In vitro and in silico studies of SARS-CoV-2 main protease $M^{\text {pro }}$ inhibitors isolated from

Helichrysum bracteatum

Abstract

Discovering SARS-CoV-2 inhibitors from natural sources is still a target that capture the interest of many researchers. In this study, the methanolic extract of Helichrysum bracteatum leaves besides compounds (1-18) isolated and identified from it were evaluated in vitro for their inhibitory activities against SARS-CoV-2 main protease ($\mathrm{M}^{\text {pro }}$) using Fluorescence Resonance Energy Transfer assay (FRET-based assay). Based on 1D and 2D spectroscopic techniques, compounds (1-18) were identified as 24 - β-ethyl-cholesta-5(6),22(23),25(26)-triene-3-ol (1), α amyrin (2), linoleic acid (3), 24- β-ethyl-cholesta-5(6),22(23),25(26)-triene-3-O- β-D-glucoside (4), 1,3-propanediol-2-amino-1-(3`,4`-methylenedioxyphenyl)(5), (-)-(7R, $8 R, 8^{`} R$)-acuminatolide (6), (+)-piperitol (7), 5,7,4`-trihydroxy-8,3`-dimethoxy flavanone (8), 5,7,4`-trihydroxy-6methoxy flavanone (9), 4`,5-dihydroxy-3`,7,8-trimethoxyflavone (10), 5,7-dihydroxy-3`,4`,5`,8tetramethoxy flavone (11), 1,3-propanediol-2-amino-1-(4`-hydroxy-3`-methoxyphenyl)(12), 3’,5`,5,7-tetrahydroxy-6-methoxyflavanone (13), simplexoside (piperitol-O- \(\beta\)-D-glucoside) (14), pinoresinol monomethyl ether- \(\beta\)-D-glucoside (15), orientin (16), luteolin-3`-O- β-D-glucoside (17) and 3,5-dicaffeoylquinic acid (18). Compounds 6, 12 and 14 showed comparable inhibitory activities against SARS-COV-2 $\mathrm{M}^{\text {pro }}$ with IC_{50} values of $0.917 \pm 0.05,0.476 \pm 0.02$ and $0.610 \pm 0.03 \mu \mathrm{M}$, respectively compared with the control lopinavir with an IC_{50} value of 0.225 ± 0.01 $\mu \mathrm{M}$. The other tested compounds showed considerable inhibitory activities. Molecular docking study for the tested compounds was carried out to correlate their binding modes and affinities for SARS-COV-2 $\mathrm{M}^{\text {pro }}$ enzyme with the in vitro results. Analyzing the results of the in vitro assay together with the obtained in silico results led to the conclusion that the phenylpropanoids, lignans and flavonoids could be considered suitable drug leads for developing anti-COVID-19 therapeutics. Moreover, the phenylpropanoid skeleton oxygenated at $\mathrm{C} 3, \mathrm{C} 4$ of the phenyl moiety and at $\mathrm{C} 1, \mathrm{C} 3$ of the propane part constitute an essential core of the SARS-COV-2 $\mathrm{M}^{\text {pro }}$ inhibitors, thus could be proposed as scaffold for the design of new anti-COVID-19 drugs.

Key words: Helichrysum bracteatum, FRET-based assay, SARS-COV-2 M ${ }^{\text {pro }}$ inhibitors, Molecular docking, anti-COVID-19.

Content

Figures	Page:
Figure S1: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 1 in CDCl_{3}	5
Figure S2: DEPT Q spectrum of compound 1 in CDCl_{3}	5
Figure S3: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 2 in CDCl_{3}	6
Figure S4: APT spectrum of compound 2 in CDCl_{3}	6
Figure S5: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 3 in CDCl_{3}	7
Figure S6: APT spectrum of compound 3 in CDCl_{3}	7
Figure S7: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 4 in DMSO- d_{6}	8
Figure S8: APT spectrum of compound 4 in DMSO- d_{6}	8
Figure S9: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $5 \mathrm{in} \mathrm{CDCl}_{3}$	9
Figure S10: APT spectrum of compound 5 in CDCl_{3}	9
Figure S11:HMBC correlations of compound 5	10
Figure S12: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 6 in CDCl_{3}	11
Figure S13: APT spectrum of compound 6 in CDCl_{3}	11
Figure S14: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $7 \mathrm{in} \mathrm{CDCl}_{3}$	12
Figure S15: APT spectrum of compound 7 in CDCl_{3}	12
Figure S16: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 8 in $\mathrm{CD}_{3} \mathrm{OD}$	13
Figure S17:APT spectrum of compound 8 in $\mathrm{CD}_{3} \mathrm{OD}$	13
Figure S18:HMBC spectrum of compound 8	14
Figure S19: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 9 in $\mathrm{CD}_{3} \mathrm{OD}$	15
Figure S20: APT spectrum of compound 9 in $\mathrm{CD}_{3} \mathrm{OD}$	15
Figure S21: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 10 in DMSO- d_{6}	16
Figure S22: DEPT-Q spectrum of compound 10 in DMSO- d_{6}	16
Figure S23:HMBC spectrum of compound 10	17
Figure S24: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 11 in CDCl_{3}	18
Figure S25: APT spectrum of compound 11 in CDCl_{3}	18
Figure S26: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 12 in CDCl_{3}	19
Figure S27: APT spectrum of compound 12 in CDCl_{3}	19
Figure S28: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 13 in $\mathrm{CD}_{3} \mathrm{OD}$	20
Figure 29: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 13 (expansion at $\delta(2.5-6.8 \mathrm{ppm})$	21
Figure S30: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 13 (expansion at $\delta(6.60-6.95 \mathrm{ppm}$)	22
Figure S31: APT spectrum of compound 13 in $\mathrm{CD}_{3} \mathrm{OD}$	23
Figure S32: HSQC spectrum of compound 13	24
Figure S33: HSQC expansion spectrum of compound 13	25
Figure S34: HMBC spectrum of compound 13	26
Figure S35: HMBC expansion spectrum of compound 13	27
Figure S36: LC-MS (${ }^{+}$ESI) spectrum of compound 13	28
Figure S37A: Proposed fragmentation pattern for compound 13 according to HR-	29
Figure S37B:LC-MS (${ }^{+}$ESI) fragmentation of compound 13	29
Figure S38: Structural differences between compounds 8, 9\& 13	30
Figure S39: Selected HMBC correlations of compound 13	30
Figure S40: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 14 in DMSO- d_{6}	31
Figure S41: APT spectrum of compound 14 in DMSO- d_{6}	31
Figure S42: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 15 in $\mathrm{CD}_{3} \mathrm{OD}$	32

Figure S43: APT spectrum of compound 15 in $\mathrm{CD}_{3} \mathrm{OD}$ 32
Figure S44: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 16 in DMSO- d_{6} 33
Figure S45: APT spectrum of compound 16 in DMSO- d_{6} 33
Figure S46: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 17 in $\mathrm{CD}_{3} \mathrm{OD}$ 34
Figure S47: APT spectrum of compound 17 in $\mathrm{CD}_{3} \mathrm{OD}$ 34
Figure S48: HMBC spectrum of compound 17 35
Figure S49: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 18 in $\mathrm{CD}_{3} \mathrm{OD}$ 36
Figure S50: APT spectrum of compound 18 in $\mathrm{CD}_{3} \mathrm{OD}$ 36
Figure S51: SAR of compound 12 versus compound 5 37
Figure S52: SAR of compound 1 versus compound 4 37
Figure S53: SAR of compound 14 versus compound 7 38
Figure S54: SAR of compound 14 versus compound 15 38
Figure S55: The SARS-COV-2 M ${ }^{\text {proinhibition }\left(\mathrm{IC}_{50} \mu \mathrm{~g} / \mathrm{ml}\right) \text { of methanolic extract, }}$ 39fractionsand the isolated compounds against the standard lopinavir
Tables
Page:40
Table S1: UV $\lambda_{\text {max }}(\mathrm{nm})$ of compounds8, $9,13,10,11,16 \& 17$ in methanol and in different flavonoids shift reagents
Table S2: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and APT values of compound 8,9 and 13 in $\mathrm{CD}_{3} \mathrm{OD}$41
Table S3: Key HMBC correlations of compound 13
Table S4: Results of the SARS-COV-2 M ${ }^{\text {pro }}$ inhibitory activity of the methanolic extract of the leaves of H. bracteatumand itsfractions compared with the standard lopinavir
Table S5: The SARS-COV-2 M ${ }^{\text {proinhibition }}\left(\mathrm{IC}_{50} \mu \mathrm{M}\right)$, docking scores ${ }^{\text {a and type of }}$ binding interactions of the isolated compounds (1-18) and the standard compound (lopinavir)
Table S6: 2D binding mode and residues involved in the recognition of the standard45 lopinavir and the isolated compounds docked and minimized in the SARS-COV-2 $\mathrm{M}^{\text {pro }}$ binding pocket
Table S7:A)3D binding mode and residues involved in the recognition the standard lopinavir and the isolated compounds docked and minimized in the SARS-COV-2 $\mathrm{M}^{\text {probinding pocket }}$
B) Surface and maps of the isolated compound compared to the standard lopinavir

Compound 1

Compound 2

$$
0 \text { ○ }
$$

Figure S4: APT spectrum of compound 2 in $\mathbf{C D C l}_{3}$

Compound 3

Figure S6: APT spectrum of compound 3 in CDCl_{3}

Compound 4

Compound 5

Figure S11: HMBC correlations of compound 5 in CDCl_{3}

Compound 6

Compound 7

Figure S18: HMBC spectrum of compound HM 8

Compound 9

Compound 10

Figure S23: HMBC spectrum of compound 10

Compound 11

Compound HM 8

5,7,4`- trihydroxy- 8,3` dimethoxy flavanone

Compound HM9

5,7,4`-trihydroxy-6-methoxy flavanone

Compound HM 13

3',5`,5,7-tetrahydroxy-6methoxyflavanone

Figure S38: Structural differences between compounds $8,9 \& 13$

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{7}$
Exact mass $[\mathrm{M}+\mathrm{H}]^{+}: 319.24$
Calculated mass $[\mathrm{M}+\mathrm{H}]^{+}: 319.28$

Compound 15

Figure S41: APT spectrum of compound 14 in DMSO- d_{6}

Compound 15

Compound 17

Compound 18

三8

 extract, fractions and the isolated compounds against the standard lopinavir

Table S1: UV $\lambda_{\text {max }}(\mathrm{nm})$ of compounds $8,9,13,10,11,16 \& 17$ in methanol and in different shift reagents

Comp ounds	Band	MeOH	NaOCH_{3}	$\mathbf{A l C l}_{3}$	$\mathbf{A l C l}_{3}$ HCl	NaOAc	NaOAc/ $\mathbf{H}_{3} \mathbf{B O}_{3}$
Flavanones							
8	I	236	245	235	235	235	238
	II	289	327	310	309	329	293
9	I	232	243	231	231	234	238
	II	291	326	307	311	331	294
13	I	234	238	236	234	237	237
	II	289	291	293	308	320	295
Flavones							
10	I	345	410	357	351	409	328
	II	276	270	307	306	272	276
11	I	323	306	345	345	314	313
	II	278	287	310	310	294	299
Glucosidated flavones							
16	I	346	406	424	382	392	380
	II	271	277	346	361	277	268
17	I	331	387	363	364	397	336
	II	271	279	342	339	310	290

Table

C/H Positi on	Compound HM 8 [5,7,4`- trihydroxy-8,3`- dimethoxy flavanone]		Compound HM 9 [5,7,4’-trihydroxy-6methoxy flavanone]		$\begin{gathered} \text { Compound HM 13 } \\ {\left[3^{{fd2e63c57-930d-42fb-811f-cd801ee88f5d}}, 5,7\right. \text {-tetrahydroxy-6- }} \\ \text { methoxyflavanone] } \end{gathered}$		
	${ }^{1} \mathrm{H}-\mathrm{NMR}$	APT	${ }^{1} \mathrm{H}-\mathrm{NMR}$	APT	${ }^{1} \mathrm{H}-\mathrm{NMR}$	APT	
2	$\begin{gathered} 5.18(1 \mathrm{H}, \mathrm{dd}, \\ J_{1}=2.8, J_{2}= \\ 12.6) \end{gathered}$	79.2	$\begin{gathered} 5.22(1 \mathrm{H}, \\ \mathrm{dd}, J_{1}=2.8, \\ \left.J_{2}=13\right) \end{gathered}$	79.2	$\begin{gathered} 5.16(1 \mathrm{H}, \\ \mathrm{dd}, J=2.8 \\ 12.8) \end{gathered}$	79.2	CH
3	$\begin{gathered} \mathbf{3} \boldsymbol{\alpha}=2.56(1 \mathrm{H}, \\ \mathrm{dd}, J_{1}=2.8, \\ \left.J_{2}=17.2\right) \\ \mathbf{3} \boldsymbol{\beta}=2.97(1 \mathrm{H}, \\ \text { dd, } J_{1}=12.8, \\ \left.J_{2}=17.2\right) \\ \hline \end{gathered}$	42.7	$\begin{gathered} \mathbf{3} \boldsymbol{\alpha}=2.60 \\ \left(1 \mathrm{H}, \mathrm{dd}, J_{1}=\right. \\ \left.2.8, J_{2}=17\right) \\ \mathbf{3} \boldsymbol{\beta}=3.01 \\ (1 \mathrm{H}, \mathrm{dd}, J= \\ 12.8,17.2) \\ \hline \end{gathered}$	42.7	$\begin{gathered} \mathbf{3} \boldsymbol{\alpha}=2.60 \\ (1 \mathrm{H}, \mathrm{dd}, J= \\ 2.8,17.2) \\ \mathbf{3} \boldsymbol{\beta}=2.96 \\ (1 \mathrm{H}, \mathrm{dd}, J= \\ 12.8,17.2) \\ \hline \end{gathered}$	42.7	CH_{2}
4	-------------	195.7	-------------	197.2	-------------	197.2	Q
5	------------	159.0	------------	155.2	------------	155.2	Q
6	$5.79(1 \mathrm{H}, \mathrm{s})$	96.3	-------------	129.0	-------------	129.0	Q
7	-------------	164.6	------------	159.4	-------------	159.5	Q
8	-------------	130.7	$5.87(1 \mathrm{H}, \mathrm{s})$	94.8	$5.87(1 \mathrm{H}, \mathrm{s})$	94.8	CH
9	-------------	155.0	----------	157.6	---------	158.8	Q
10	-------------	100.7	---------	102.1	---------	102.1	Q
OCH_{3}	3.66 (3H, s)	59.4	3.67 (3H, s)	59.6	3.68 (3H, s)	59.6	CH_{3}
OCH_{3}	3.78 (3H, s)	55.1		-----		------	-----
1	------------	130.1		129.7		130.3	Q
2`	$\begin{gathered} 6.97(1 \mathrm{H}, \mathrm{~d}, \\ J=1.6) \end{gathered}$	109.8	$\begin{gathered} 7.21(2 \mathrm{H}, \mathrm{~d}, \\ J=8.4) \end{gathered}$	127.6	6.68 (2H, s)	117.9	CH
3	-------------	147.7	$\begin{gathered} 6.71(2 \mathrm{H}, \mathrm{~d}, \\ J=8.8) \end{gathered}$	114.9	-------------	145.1	Q
4	-----------	146.6	-----	158.8	6.68 (2H, s)	114.8	CH
5'	$\begin{gathered} 6.71(1 \mathrm{H}, \mathrm{~d}, \\ J=8) \end{gathered}$	114.7	$\begin{gathered} 6.71(2 \mathrm{H}, \mathrm{~d}, \\ J=8.8) \end{gathered}$	114.9	-------------	145.5	Q
6	$\begin{gathered} \hline 6.81(1 \mathrm{H}, \mathrm{dd}, \\ \left.J_{1}=8.2, J_{2}=2\right) \\ \hline \end{gathered}$	119.0	$\begin{gathered} 7.21(2 \mathrm{H}, \mathrm{~d}, \\ J=8.4) \end{gathered}$	127.6	$6.81(1 \mathrm{H}, \mathrm{s})$	113.3	CH

S2:
${ }^{1} \mathrm{H}$ -
NMR
and
APT values
of
compo
und 8,
9 and
13in
$\mathrm{CD}_{3} \mathrm{O}$
D*

* δ values of compounds $\mathbf{8 , 9 \&} \mathbf{1 3}$ are expressed in ppm and coupling constants (J) in $\mathrm{Hz} .{ }^{1} \mathrm{H}-$ NMR and APT were measured in $\mathrm{CD}_{3} \mathrm{ODat} 400$ and 100 MHz respectively.

Table S3: HMBC correlations of compound 13 deduced from HMBC (Figures S34, S35\&S39)

Proton	Proton (Values in ppm)	Correlated Carbon (s) (Values in ppm)
OCH_{3}	3.68	$129.0(\mathrm{C}-6)$
$\mathrm{H}-8$	5.87	$129.0(\mathrm{C}-6), 159.5(\mathrm{C}-7), 158.8(\mathrm{C}-9), 102.1(\mathrm{C}-$ $\mathrm{H}-2^{{f7fd6daa5-4ada-4da4-bd6d-d4b591a5e1a6}}\right), 1130.3\left(\mathrm{C}-1^{{fb7325412-6a0d-4152-9a43-db374934e0fc}}\right), 79.2\left(\mathrm{C}-4^{{faf287299-2e46-4383-846e-9f6272c33c4f}}\right), 145.5$
H-4` & 6.68 & \(145.1\left(\mathrm{C}-3^{`}\right), 145.5\left(\mathrm{C}-5^{`}\right)\) \\ \hline H-6`	6.81	$117.9\left(\mathrm{C}-2^{{f31d981a8-517d-423e-90a6-0529750adb7d}}\right), 145.5\left(\mathrm{C}-5^{`}\right), 79.2$ $(\mathrm{C}-2)$

Table S4: Results of the SARS-COV-2M pro inhibitory activity of the methanolic extract of the leaves of \boldsymbol{H}. bracteatum and its fractions compared with the standard lopinavir

Extract\& Fractions	In vitroSARS-COV-2M IC $\mathbf{5 0}$ $\mathbf{I C}_{\mathbf{5 0}}(\boldsymbol{\mu g} / \mathbf{m l})$
Lopinavir (Standard)	$\mathbf{0 . 1 4 1} \pm 0.01$
Methanolic extract	14.47 ± 0.74
Pet. ether fraction	3.466 ± 0.18
Methylene fraction	16.05 ± 0.82
Ethyl fraction	2.589 ± 0.13
Butanol fraction	21.9 ± 1.12

Table S5: The SARS-COV-2M ${ }^{\text {proinhibition }}\left(\mathrm{IC}_{50} \mu \mathrm{M}\right)$, docking scores ${ }^{\text {a }}$ and type of binding interactions of the isolated compounds (1-18) and the standard compound (lopinavir)

CompOund (code)	Compounds (name)	$\begin{gathered} \text { In } \\ \text { vitroSARS } \\ \text {-COV-2 } \\ \text { M }^{\text {pro }} \text { IC }_{50} \\ \text { uM IC } \mathbf{C l}_{50} \\ (\mu \mathrm{~mole}) \end{gathered}$	Binding energy (kcal/m ol) (dockin g score)	Type of binding interactions					
Standard	Lopinavir	$\mathbf{0 . 2 2 5} \pm 0.01$	-9.61	H-bond with Glu 166 \& Gln 189					
1	$\begin{aligned} & 24-\beta \text {-ethyl-cholesta- } \\ & 5(6), 22(23), 25(26) \text {-triene- } \\ & 3 \text {-ol } \end{aligned}$	12.51 ± 0.64	-9.99	H-bond with Glu 166 \& Phe 140					
2	α-amyrin	4.185 ± 0.21	-10.29	H-bond with Glu 166					
3	Linoleic acid	20.67 ± 1.05	-10.39	H-bond with Thr 190 \& Arg 188					
4	$\begin{gathered} \text { 24- } \beta \text {-ethyl-cholesta- } \\ 5(6), 22(23), 25(26) \text {-triene- } \\ \text { 3-O- } \beta \text {-D-glucoside } \end{gathered}$	89.99 ± 4.59	-11.92	Three H-bonds with Gln 189					
5	1,3-propanediol-2-amino-1- (3`,4`-methylene dioxyphenyl)	8.532 ± 0.43	-8.97	-Two H-bonds with Gln 189 - H-bond with Glu 166 \& Gln 192					
6	$\begin{aligned} & (-)-\left(7 R, 8 R, 8^{{f6c5106e3-e495-4d45-b802-2ff9ed669461}-trihydroxy-8,3{f6fff89fc-5fc4-4a52-ba2c-d6b66d92a856}-trihydroxy-6methoxy flavanone & \(11.83 \pm 0.6\) & -11.49 &\begin{tabular}{l} -H-bond with Glu 166, Gly 143\& Ser 144 \\ -Two H-bonds with His 163 \end{tabular} \\ \hline 10 & \[\begin{aligned} & \text { 4{f60835ef4-b99b-4bd1-a247-a6fe5023e8dd},7,8- } \\ & \text { trimethoxyflavone } \end{aligned}$	12.83 ± 0.65	-13.45	-H-bond with Glu 166 \& Leu 141 - Two H-bonds with Gly 143					
11	5,7-dihydroxy- 3`,4`,5`,8tetramethoxy flavone & \(5.069 \pm 0.26\) & -12.48 & H-bond with Glu 166, Cys 145, Gly 143 \& Ser 144 \\ \hline 12 & 1,3-propanediol-2-amino-1-(4`-hydroxy-3`methoxyphenyl) & \(0.476 \pm 0.02\) & -10.79 & \begin{tabular}{l} -Two H-bonds with Glu 166 \\ - H-bond with Gln 189, Thr \(190 \& \operatorname{Arg} 188\) \end{tabular} \\ \hline 13 & \[\begin{gathered} 3^{`}, 5^{`}, 5,7 \text {-tetrahydroxy-6- } \\ \text { methoxyflavanone } \\ \hline \end{gathered} \] & \(5.565 \pm 0.28\) & -12.81 & H-bond with Glu 166, His 163 \& Leu 167 \\ \hline \end{tabular} \begin{tabular}{\|c	c	c	c	c	} \hline \(\mathbf{1 4}\) & \begin{tabular}{c} Simplexoside (piperitol-O- \\ \(\beta\)-D-glucoside) \end{tabular} & \(0.61 \pm 0.03\) & -12.96 & \begin{tabular}{c} -H-bond with Gln 189, Glu \\ 166, Thr 26, Thr 24 \& Ser 46 \\ - Two H-bonds with Gly 143 \end{tabular} \\ \hline \(\mathbf{1 5}\) & \begin{tabular}{c} Pinoresinol monomethyl \\ ether- \(\beta\)-D-glucoside \end{tabular} & \(11.46 \pm 0.58\) & -11.69 & \begin{tabular}{l} -Three H- bonds with Glu 166 \\ -Two H-bonds with Thr 190 \\ - H-bond with Gln 192, Thr \\ 26 \& Arg 188 \end{tabular} \\ \hline \(\mathbf{1 6}\) & Orientin & \(27.5 \pm 1.4\) & -14.34 & \begin{tabular}{l} -Two H-bonds with Glu 166 \\ - H-bond with His 163 \& Arg \\ 188 \end{tabular} \\ \hline \(\mathbf{1 7}\) & \begin{tabular}{c} Luteolin 3`-O- β-D-			
glucoside					\& 10.12 ± 0.52 \& -15.61 \&	-Two H-bonds with Glu 166			
:---									
- H-bond with His 163, Phe									
140, Thr 24 \& Thr 25	 								

\hline $\mathbf{1 8}$ \& | 3,5 -dicaffeoylquinic acid |
| :---: | \& 4.74 ± 0.24 \& -16.24 \& | -H-bond with Glu 166, Gln |
| :---: |
| 189, Leu 141 \& Thr 25 |

\hline
\end{tabular}

[a] Docking was performed using MOE 2009.10 towards the active site of $M^{\text {pro }}$ (code: 6LU7)
[b] All data are presented as mean value $\pm \mathrm{SD}$ for three independent experiments.
[c] Lopinavir was used as a positive control.

Table S6: 2D binding mode and residues involved in the recognition of the standard lopinavir and the isolated compounds docked and minimized in the SARS-COV-2M ${ }^{\text {probinding pocket }}$

[^0]

Table (S7): A) 3D binding mode and residues involved in the recognition the standard lopinavir and the isolated compounds docked and minimized in the SARS-COV2M ${ }^{\text {probinding pocket }}$
B) Surface and maps of the isolated compound compared to the standard lopinavir

No.	Name of compounds	A	B
Standard	Lopinavir		

'			
2	${ }^{\text {a ma }}$		
3	Lemelcesad		

13	$\begin{gathered} 3^{\prime}, 5,5,7- \\ \text { tetrahydroxy-6- } \\ \text { methoxyflavanone } \end{gathered}$		
14	Simplexoside (piperitol-O- β-Dglucoside)		
15	Pinoresinol monomethyl ether- β-Dglucoside		

16

Data S1

Compound 1 (24- β-ethyl-cholesta-5(6),22(23),25(26)-triene-3-ol) was obtained as white powder. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 3.49(\mathrm{~m}, \mathrm{H}-3), 5.32(1 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}, \mathrm{H}-6), 0.67(\mathrm{~s}, \mathrm{H}-18), 0.99$ (br $\mathrm{s}, \mathrm{H}-19), 0.98$ (br s, H-21), $5.22(1 \mathrm{H}, \mathrm{dd}, J=15.2 \& 8 \mathrm{~Hz}, \mathrm{H}-22), 5.13$ ($1 \mathrm{H}, \mathrm{dd}, J=15.2 \& 8 \mathrm{~Hz}, \mathrm{H}-$ 23), 4.67-4.69 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-26$), 1.62 ($\mathrm{s}, \mathrm{H}-27), 0.82(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-29)$. DEPT Q ($\mathrm{CDCl}_{3}, 100$ $\mathrm{MHz}): 37.3$ (C-1), 31.7 (C-2), 71.8 (C-3), 39.8 (C-4), 140.8 (C-5), 121.7 (C-6), 31.9 (C-7), 31.9 (C-8), 50.1 (C-9), 36.5 (C-10), 21.1 (C-11), 39.7 (C-12), 42.3 (C-13), 56.9 (C-14), 24.3 (C-15), 28.7 (C-16), 55.9 (C-17), 12.1 (C-18), 19.4 (C-19), 40.2 (C-20), 20.8 (C-21), 137.2 (C-22), 130.0 (C-23), 52.0 (C-24), 148.7 (C-25), 109.5 (C-26), 20.3 (C-27), 25.7 (C-28), 12.2 (C-29).

Compound 2 (α-amyrin) was obtained as oily substance. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 3.15(\mathrm{~m}$, $\mathrm{H}-3), 5.11(\mathrm{t}, \mathrm{H}-12), 0.94(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-23), 0.85(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-24), 0.79(\mathrm{~m}, \mathrm{H}-25), 0.89(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-26)$, 1.00 (s, 3H, H-27), 0.93 (s, 3H, H-28), $0.89(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-29), 0.73(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-30)$. APT ($\mathrm{CDCl}_{3}, 100$ MHz): 38.8 (C-1), 27.3 (C-2), 77.4 (C-3), 38.5 (C-4), 55.2 (C-5), 18.4 (C-6), 32.9 (C-7), 40.0 (C-
8), 47.7 (C-9), 36.8 (C-10), 23.4 (C-11), 124.4 (C-12), 139.6 (C-13), 42.0 (C-14), 29.4 (C-15), 26.6 (C-16), 33.8 (C-17), 59.1 (C-18), 39.7 (C-19), 39.6 (C-20), 31.3 (C-21), 41.5 (C-22), 28.8 (C23), 15.7 (C-24), 15.6 (C-25), 16.9 (C-26), 23.4 (C-27), 28.2 (C-28), 17.5 (C-29), 21.4 (C-30).

Compound 3 (linoleic acid) was obtained as white powder. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 2.32$ (H-2), $1.61(\mathrm{H}-3), 1.29(\mathrm{H}-4), 1.29(\mathrm{H}-7), 2.07(\mathrm{H}-8), 5.34(\mathrm{H}-9,10), 2.78(\mathrm{H}-11), 5.34(\mathrm{H}-12,13)$, 1.29 (H-15\&17), 0.97 (H-18). APT ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): 179.1 (C-1), 33.9 (C-2), 24.7 (C-3), 29.0 (C-4), 29.3 (C-5), 29.6 (C-6), 29.7 (C-7), 27.2 (C-8), 130.3 (C-9), 128.3 (C-10), 25.5 (C-11), 130.1 (C-12), 127.9 (C-13), 25.6 (C-14), 29.4 (C-15), 31.9 (C-16), 22.7 (C-17), 14.3 (C-18).

Compound 4 (24- β-ethyl-cholesta-5(6),22(23),25(26)-triene-3-O- β-D-glucoside) was obtained as white powder. ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$): 3.66 (m, H-3), 5.34 (m, H-6), 0.68 (s, H-18), 0.99 (s, H-19), 0.97 (s, H-21), 5.28-5.14 (m, H-22,23), 4.91 (m, H-26), 1.62 (s, H-27), 0.80 ($\mathrm{s}, \mathrm{H}-29$), 5.03 (d, $\left.J=8.8 \mathrm{~Hz}, \mathrm{H}-1^{`}\right), 4.24$ (d, $\left.J=7.6 \mathrm{~Hz}, \mathrm{H}-2^{`}\right), 4.70$ (m, H-3`, 4), 3.66 (m, H-5`), 4.46 (t, $J=$ $11.2 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, \mathrm{H}-6$ a a), 4.70 (m, H-6 b). APT (DMSO- $d_{6}, 100 \mathrm{MHz}$): 37.3 (C-1), 29.7 (C-2), 77.2 (C-3), 42.3 (C-4), 140.9 (C-5), 121.7 (C-6), 31.9 (C-7\&8), 50.1 (C-9), 36.7 (C-10), 21.1 (C11), 38.7 (C-12), 42.3 (C-13), 56.7 (C-14), 24.3 (C-15), 28.8 (C-16), 55.7 (C-17), 12.3 (C-18), 19.6 (C-19), 40.6 (C-20), 21.2 (C-21), 137.3 (C-22), 130.0 (C-23), 51.7 (C-24), 148.2 (C-25), 110.5 (C-26), 20.4 (C-27), 25.7 (C-28), 12.5 (C-29), 101.2 (C-1`), 73.9 (C-2`), 77.4 (C-3`), 70.6 (C-4`), 77.2 (C-5`), 61.6 (C-6').

Compound 5 (1,3-propanediol-2-amino-1-(3`,4`-methylenedioxyphenyl) or (1`,3`-propanediol-2`-amino-1`-(1,3-benzodioxol-5-yl)) was obtained as white powder. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $4.72(\mathrm{~d}, 1 \mathrm{H}, J=3.2 \mathrm{~Hz}, \mathrm{H}-1), 3.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 4.23(\mathrm{dd}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}), 3.87$ (dd, $1 \mathrm{H}, J=6.8 \mathrm{~Hz}, 2 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}$), 6.85 (br s, 1H, H-2`), 6,78 (br d, \(1 \mathrm{H}, J=8, \mathrm{H}-5{ }^{`}\)), 6.80 (br d, $1 \mathrm{H}, J=$ 10.8, H-6'), $5.95\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right)$. АРT $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 85.8(\mathrm{C}-1), 54.3(\mathrm{C}-2), 71.7(\mathrm{C}-3)$, 135.0 (C-1`), 106.5 (C-2`), 148.0 (C-3`), 147.1 (C-4`), 108.2 (C-5`), \(119.4(\mathrm{C}-6 `), 101.1\left(\mathrm{OCH}_{2} \mathrm{O}\right)\).

Compound $6\left((-)-(7 R, 8 R, 8 ` R)\right.$-acuminatolide) was obtained as white powder. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 400 MHz): 6.84\& 6.79 (br. s, 3 H aromatic), 5.97 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}$), $4.60\left(\mathrm{~d}, 1 \mathrm{H}, J_{7,8}=6.8 \mathrm{~Hz}, \mathrm{H}-7\right.$), $3.06-3.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 3.44\left(\mathrm{ddd}, 1 \mathrm{H}, J_{7,8}=3.6 \mathrm{~Hz}, J_{8^{\prime}, 9^{\mathrm{eq}}}=3.6 \mathrm{~Hz}, J_{8^{\prime}, 8}=3.6 \mathrm{~Hz}, \mathrm{H}-8^{`}\right), 4.49$ (dd, $\left.1 \mathrm{H}, J_{9 \mathrm{eq}, 9 \mathrm{ax}=}=6.8, J_{8,9 \mathrm{eq}}=6.8, \mathrm{H}-9 \mathrm{eq}\right), 4.38-4.31(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-9 \mathrm{ax} \& \mathrm{H}-9 \times \mathrm{ax}), 4.19$ (dd, 1 H , $J_{9}{ }^{\text {eq }, 9} 9^{\mathrm{ax}}=3.6, J_{8,9 \mathrm{eq}}=3.6$, H-9`eq). APT \(\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 132.7(\mathrm{C}-1), 106.4(\mathrm{C}-2), 148.2(\mathrm{C}-\) 3), \(147.8(\mathrm{C}-4), 108.4(\mathrm{C}-5), 119.7(\mathrm{C}-6), 101.3\left(\mathrm{OCH}_{2} \mathrm{O}\right), 86.1(\mathrm{C}-7), 178.1\left(\mathrm{C}-7{ }^{\circ}\right), 48.4(\mathrm{C}-8)\), 46.0 (C-8`), 70.1 (C-9), 69.8 (C-9`).

Compound $7\left((+)\right.$-piperitol) was obtained as white powder. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 6.77-$ $6.89(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 5.95\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) 5.68\left(\mathrm{~s}, 1 \mathrm{H}, 4{ }^{`}-\mathrm{OH}\right), 4.73(2 \mathrm{H}, \mathrm{d}$, $\left.J=2, \mathrm{H}-7 \& 7{ }^{`}\right)$, 3.03-3.12 (2H, m, H-8\&8`), 4.21-4.27 (2H, m, H-9a\&9`a), 3.86-3.89 (2H, m, H9b\&9`b). APT (\(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\)): 135.1 (C-1), 106.5 (C-2), 147.9 (C-3), 147.1 (C-4), 108.6 (C-5), 119.4 (C-6), \(101.1\left(\mathrm{OCH}_{2} \mathrm{O}\right), 132.9\) (C-1`), 108.2 (C-2`), 146.7 (C-3`), 145.3 (C-4`), 114.3 (C-5`), $118.9\left(\mathrm{C}-6{ }^{`}\right), 55.9\left(\mathrm{OCH}_{3}\right), 85.9(\mathrm{C}-7), 85.8\left(\mathrm{C}-7^{`}\right), 54.3(\mathrm{C}-8), 54.2\left(\mathrm{C}-8{ }^{`}\right), 71.7\left(\mathrm{C}-9 \& 9^{`}\right)$.

Compound 8 (5,7,4-trihydroxy-8, $3^{`}$-dimethoxyflavanone) was obtained as yellowish white powder. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right): 5.18(1 \mathrm{H}, \mathrm{dd}, J=2.8 \mathrm{~Hz}, 12.6 \mathrm{~Hz}, \mathrm{H}-2), 2.56(1 \mathrm{H}, \mathrm{dd}, J=$ $2.8 \mathrm{~Hz}, 17.2 \mathrm{~Hz}, \mathrm{H}-3 \alpha), 2.97(1 \mathrm{H}, \mathrm{dd}, J=12.8 \mathrm{~Hz}, 17.2 \mathrm{~Hz}, \mathrm{H}-3 \beta$), 5.79 (s, $1 \mathrm{H}, \mathrm{H}-6$), 3.66 ($\mathrm{s}, 3 \mathrm{H}$, R_{4}), $3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{R}_{5}\right), 6.97\left(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}, \mathrm{H}-2^{`}\right), 6.71\left(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{H}-5^{`}\right), 6.81(1 \mathrm{H}, \mathrm{dd}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{~Hz}, \mathrm{H}-6$). APT ($\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}$): 79.2 (C-2), 42.7 (C-3), 195.7 (C-4), 159.0 (C-5), 96.3 (C-6), 164.6 (C-7), 130.7 (C-8), 155.0 (C-9), 100.7 (C-10), 59.4 (R_{4}), 55.1 (R_{5}), 130.1 (C-1`), 109.8 (C-2`), 147.7 (C-3`), 146.6 (C-4`), 114.7 (C-5`), 119.0 (C-6').

Compound 9 (5,7,4-trihydroxy-6-methoxy flavanone) was obtained as yellowish white powder. ${ }^{1} \mathrm{H}$ NMR (CD $\left.{ }_{3} \mathrm{OD}, 400 \mathrm{MHz}\right): 5.22(1 \mathrm{H}, \mathrm{dd}, J=2.8 \mathrm{~Hz}, 13 \mathrm{~Hz}, \mathrm{H}-2), 2.60(1 \mathrm{H}, \mathrm{dd}, J=2.8 \mathrm{~Hz}, 17$ $\mathrm{Hz}, \mathrm{H}-3 \alpha), 3.01(1 \mathrm{H}, \mathrm{dd}, J=12.8 \mathrm{~Hz}, 17.2 \mathrm{~Hz}, \mathrm{H}-3 \beta), 5.87$ (s, $1 \mathrm{H}, \mathrm{H}-8$), $3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.21$ ($2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-2^{`}, 6 `$), $6.71\left(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{H}-3^{`}, 5^{`}\right)$. APT (CD ${ }_{3} \mathrm{OD}, 100 \mathrm{MHz}$): 79.2 (C-2), 42.7 (C-3), 197.2 (C-4), 155.2 (C-5), 129.0 (C-6), 159.4 (C-7), 94.8 (C-8), 157.6 (C-9), 102.1 (C10), $59.6\left(\mathrm{OCH}_{3}\right), 129.7(\mathrm{C}-1 `), 127.6\left(\mathrm{C}-2^{`}, 6\right.$) $), 114.9\left(\mathrm{C}-3^{`}, 5^{`}\right), 158.8(\mathrm{C}-4 `)$.

Compound 10 (4`,5-dihydroxy-3`,7,8-trimethoxyflavone) was obtained as yellow powder. ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right): 6.99(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 6.59(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 3.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{R}_{3}\right), 3.86(3 \mathrm{H}, \mathrm{s}$, R_{4}), $7.59\left(1 \mathrm{H} \mathrm{s}, \mathrm{H}-2^{`}\right), 7.00\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{H}-5^{`}\right), 7.60(1 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{H}-6$) , $3.90(3 \mathrm{H}$, $\mathrm{s}, \mathrm{R}_{5}$), $12.97(5-\mathrm{OH}), 10.08\left(4^{`}-\mathrm{OH}\right)$. DEPT Q (DMSO- $\left.d_{6}, 100 \mathrm{MHz}\right): 164.3(\mathrm{C}-2), 103.5(\mathrm{C}-3)$, 182.7 (C-4), 157.1 (C-5), 96.4 (C-6), 158.8 (C-7), 128.9 (C-8), 151.4 (C-9), 104.3 (C-10), 56.9 $\left(\mathrm{R}_{3}\right), 61.6\left(\mathrm{R}_{4}\right), 121.9\left(\mathrm{C}-1^{`}\right), 110.4\left(\mathrm{C}-2^{`}\right), 149.2\left(\mathrm{C}-3^{`}\right), 148.5(\mathrm{C}-4 `), 116.6\left(\mathrm{C}-5^{`}\right), 120.8(\mathrm{C}-6 `)$, $56.5\left(\mathrm{R}_{5}\right)$.

Compound 11 (5,7-dihydroxy- $3^{`}, 4^{`}, 5^{`}, 8$-tetramethoxy flavone) was obtained as yellow substance. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 6.62(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 6.43(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 4.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{R}_{4}\right)$, 7.13 (2H, s, H-2`, \(6^{`}\)), $3.95\left(6 \mathrm{H}, \mathrm{s}, \mathrm{R}_{5}, \mathrm{R}_{7}\right), 3.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{R}_{6}\right)$. APT ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 163.2(\mathrm{C}-2)$, 105.4 (C-3), 182.4 (C-4), 155.5 (C-5), 99.0 (C-6), 157.7 (C-7), 126.9 (C-8), 148.9 (C-9), 105.1 (C$10), 61.8\left(\mathrm{R}_{4}\right), 126.3\left(\mathrm{C}-1^{`}\right), 103.7\left(\mathrm{C}-2^{`}, 6 `\right), 153.7\left(\mathrm{C}-3^{`}, 5^{`}\right), 141.6(\mathrm{C}-4 `), 56.3\left(\mathrm{R}_{5}, \mathrm{R}_{7}\right), 61.1\left(\mathrm{R}_{6}\right)$.

Compound 12 (1,3-propanediol-2-amino-1-(4`-hydroxy-3`-methoxyphenyl) was obtained as colorless needles. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 4.74(\mathrm{~d}, 1 \mathrm{H}, J=4 \mathrm{~Hz}, \mathrm{H}-1), 3.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2)$, $4.25(\mathrm{dd}, 1 \mathrm{H}, J=9.2 \& 6.4 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}), 3.88(\mathrm{dd}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}), 6.90(\mathrm{~d}, 1 \mathrm{H}, J=2$ Hz, H-2`), 6.89 (d, 1H, \(J=7.6 \mathrm{~Hz}, \mathrm{H}^{-5}\)), 6.82 (dd, \(1 \mathrm{H}, J=8.2 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, \mathrm{H}^{\prime} \mathrm{6}^{`}\)), 3.91 (s, 3H, $\left.\mathrm{OCH}_{3}\right)$. APT $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 85.9(\mathrm{C}-1), 54.2(\mathrm{C}-2), 71.7(\mathrm{C}-3), 132.9(\mathrm{C}-1 `), 108.6\left(\mathrm{C}-2^{`}\right)$, 146.7 (C-3`), 145.3 (C-4`), 114.3 (C-5`), \(118.9(\mathrm{C}-6 `), 55.9\left(\mathrm{OCH}_{3}\right)\).

Compound 13 (3`,5`,5,7-tetrahydroxy-6-methoxyflavanone) was obtained as yellow powder. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right): 5.16(1 \mathrm{H}, \mathrm{dd}, J=2.8 \mathrm{~Hz}, 12.8 \mathrm{~Hz}, \mathrm{H}-2), 2.60(1 \mathrm{H}, \mathrm{dd}, J=2.8 \mathrm{~Hz}, 17.2$ $\mathrm{Hz}, \mathrm{H}-3 \alpha), 2.96(1 \mathrm{H}, \mathrm{dd}, J=12.8 \mathrm{~Hz}, 17.2 \mathrm{~Hz}, \mathrm{H}-3 \beta), 5.87(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8), 3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.68$ ($\left.2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{`}, 4^{`}\right), 6.81(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6 `)$. APT ($\left.\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right): 79.2(\mathrm{C}-2), 42.7(\mathrm{C}-3), 197.2(\mathrm{C}-4)$, 155.2 (C-5), 129.0 (C-6), 159.5 (C-7), 94.8 (C-8), 158.8 (C-9), 102.1 (C-10), $59.6\left(\mathrm{OCH}_{3}\right), 130.3$ (C-1`), 117.9 (C-2`), 145.1 (C-3`), 114.8 (C-4`), 145.5 (C-5`), 113.3 (C-6`).

Compound 14 (simplexoside (piperitol-O- β-D-glucoside)) was obtained as white powder. ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right): 6.86-7.06\left(6 \mathrm{H}, \mathrm{m}\right.$, aromatic protons), $3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.00(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}$), 4.67 (s, 2H, H-7\&7`), 3.04 (\(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \& 8{ }^{`}\)), 4.14 ($2 \mathrm{H}, \mathrm{t}, J=15.6,7.1$, H-9a, $9 ` \mathrm{a}$), 3.66-3.69 ($2 \mathrm{H}, \mathrm{d}, J=11.4, \mathrm{H}-9 \mathrm{~b}, 9 ` \mathrm{~b}), 4.88\left(1 \mathrm{H}, \mathrm{s}, J=6.7 \mathrm{~Hz}, \mathrm{H}-1^{`}\right), 3.37$ (m, protons of sugar). APT (DMSO- $\left.d_{6}, 100 \mathrm{MHz}\right): 135.9$ (C-1), 107.1 (C-2), 149.4 (C-3), 147.9 (C-4), 111.0 (C-5), 119.9 (C-6), $101.4\left(\mathrm{OCH}_{2} \mathrm{O}\right), 135.6$ (C-1`), 108.5 (C-2`), 146.9 (C-3`), 146.3 (C-4`), 115.6 (C-5`), \(118.6(\mathrm{C}-6 `), 56.2\left(\mathrm{OCH}_{3}\right), 85.4(\mathrm{C}-7), 85.3(\mathrm{C}-7 `), 54.2(\mathrm{C}-8), 54.1\left(\mathrm{C}-8^{`}\right), 71.6(\mathrm{C}-9), 71.5(\mathrm{C}-\) 9`), 100.6 (C-1`), 73.7 (C-2`), 77.3 (C-3`), 70.1 (C-4`), 77.4 (C-5`), 61.1 (C-6`).

Compound 15 (pinoresinol monomethyl ether- β-D-glucoside) was obtained as white powder. ${ }^{1} \mathrm{H}$ NMR (CD ${ }_{3} \mathrm{OD}, 400 \mathrm{MHz}$): 6.85 (d, $J=2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 6.66 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 6.71 (dd, $J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 3.76$ ($\mathrm{s}, 6 \mathrm{H}, \mathrm{R}_{1,2}$), 6.93 (d, $J=2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$) , 7.05 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ $\left.5^{`}\right), 6.82$ (dd, $\left.J=8 \mathrm{~Hz}, 2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6{ }^{\prime}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{R}_{3}\right), 4.61(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 4.66$ (d, $J=4$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-7^{`}\right), 3.04$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-8 \& 8{ }^{`}$), 3.53-3.61 (m, 2H, H-9a\&9`a), 4.12-4.17 (m, 2H, H-9b\& \(9 ` \mathrm{~b}\)), 4.78 (d, J=7.2 Hz, 1H, H-1`), 3.29-3.41 (m, 4H, H- 2``, 3`, $4^{`}{ }^{`}, 5^{`}$), 3.53-3.61 (m, 2H, H6`a, 6`b). APT ($\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}$): 132.3 (C-1), 109.5 (C-2), 147.7 (C-3), 146.1 (C-4), 114.7 (C-5), 118.6 (C-6), 54.9 ($\mathrm{R}_{1 \&} \mathrm{R}_{2}$), 136.0 (C-1`), 110.1 (C-2`), 149.5 (C-3`), 145.9 (C-4`), 116.6 (C$\left.5^{`}\right), 118.4$ (C-6`), \(55.3\left(\mathrm{R}_{3}\right), 86.1(\mathrm{C}-7), 85.7\left(\mathrm{C}-7{ }^{`}\right), 54.1(\mathrm{C}-8), 53.9\left(\mathrm{C}-8^{`}\right), 71.3\) (C-9\&9`), 101.4 (C-1`), 73.5 (C-2`), 76.4 (C-3"), 69.9 (C-4`), 76.8 (C-5`), 61.1 (C-6").

Compound 16 (orientin) was obtained as yellow powder. ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$): 6.68 (s, 1H, H-3), 6.29 (s, 1H, H-6), 7.51 (br s, 1H, H-2`), 6.89 (d, \(\left.J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{`}\right), 7.56\) (br d, $J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 `$), 4.70 (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 `)$, $3.26-3.94$ (m, 6H, H-2``, $3^{`}, 4^{` `}, 5^{` `}, 6^{`} \mathrm{a}, 6^{`} \mathrm{~b}$), 13.20 (s, 5-OH).APT (DMSO- $d_{6}, 100 \mathrm{MHz}$): 164.6 (C-2), 102.9 (C-3), 182.5 (C-4), 160.9 (C-5), 98.7 (C-6), 163.1 (C-7), 105.0 (C-8), 156.5 (C-9), 104.5 (C-10), 122.5 (C-1`), 114.5 (C-2`), 146.3 (C-3`), 150.2 (C-4`), 116.1 (C-5`), 119.9 (C-6`), 73.9 (C-1`), 71.2 (C-2`), 79.2 (C-3`), 71.2 (C4 `), 82.5 (C-5`), 62.1(C-6").

Compound 17 (luteolin- $3^{`}$-O- β-D-glucoside) was obtained as yellow powder. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, 400 MHz): 6.52 (s, H-3), 6.12 (s, H-6), 6.36 ($\mathrm{s}, \mathrm{H}-8$), 7.35 (br s, H-2`), 7.22 (d, J= \(8.4 \mathrm{~Hz}, \mathrm{H}-5^{`}\)), 7.36 (br d, $J=9.6 \mathrm{~Hz}, \mathrm{H}-6 `$), 4.8 (H-1` , masked), 3.3-3.9 (m, H-2` $\left., 3^{`}, 4^{` `}, 5^{`}, 6^{`}\right)$. APT (CD 3 OD, 100 MHz): 164.8 (C-2), 103.7 (C-3), 182.5 (C-4), 161.8 (C-5), 98.8 (C-6), 164.1 (C-7), 93.7 (C8), 158.0 (C-9), 104.1 (C-10), 125.8 (C-1`), 113.5 (C-2`), 148.6 (C-3`), 147.2 (C-4`), 116.5 (C-5`), 118.4 (C-6`), 101.8 (C-1`), 73.4 (C-2`), 76.1 (C-3`), 69.9 (C-4`), 77.1 (C-5`), 60.1 (C-6").

Compound 18 (3,5-dicaffeoylquinic acid (isochlorogenic acid)) was obtained as yellow powder. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}$): 2.31 (m, H-2eq), 2.08-2.15 (m, H-2ax, 6eq, 6ax), 5.41 (m, H-3), 3.95 (dd, $J=9.36,3.4$, H-4), 5.53 (m, H-5), 6.79 ($\mathrm{s}, \mathrm{H}-2^{`}$), 6.81 ($\mathrm{s}, \mathrm{H}-2^{`}$), 7.09 (d, $J=7.8 \mathrm{~Hz}, \mathrm{H}-$ $5^{`}, 5^{`}$), 6.99 (dd, $\left.J=7.5,2.2 \mathrm{~Hz}, \mathrm{H}-6 `, 6^{`}\right), 7.60(\mathrm{~d}, J=15.9 \mathrm{~Hz}, \mathrm{H}-7 `), 7.63$ (d, $J=15.9 \mathrm{~Hz}, \mathrm{H}-7^{`}$), 6.32 (d, $\left.J=15.9 \mathrm{~Hz}, \mathrm{H}-8^{`}\right), 6.42$ (d, $\left.J=15.9 \mathrm{~Hz}, \mathrm{H}-8^{` `}\right)$. APT ($\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}$): 74.6 (C-1), 35.9 (C-2), 72.7 (C-3), 71.3 (C-4), 70.9 (C-5), 38.9 (C-6), 170.0 (C-7), 126.6 (C-1`), 126.4 (C-1`), 113.6 (C-2`), 113.7 (C-2`), 145.4 (C-3`, 3`), 148.1 (C-4`), 148.0 (C-4`), 115.1 (C-5`), 115.0 (C5 `), 121.6 (C-6`), 121.5 (C-6`), 145.5 (C-7`), 145.4 (C-7`), 114.6 (C-8`), 114.1 (C-8`), 167.4 (C-9`), 167.9 (C-9``).

End of Supplementary material file

[^0]: Code 2D binding mode and residues

