# *In vitro* and *in silico* studies of SARS-CoV-2 main protease M<sup>pro</sup> inhibitors isolated from *Helichrysum bracteatum*

Gehad Abdel Wahab,<sup>a</sup> Walaa S. Aboelmaaty,<sup>a</sup> Mohamed Farid Lahloub,<sup>a</sup> and Amal Sallam <sup>\*a</sup>

<sup>a</sup>Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt.

\*Corresponding author:

Amal Sallam, Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt. Tel. +201092017949; fax. +2 050 2247496.

E-mail: asallam@mans.edu.eg

#### Other authors e-mail addresses:

Gehad Abdel Wahab: e-mail: <u>gehadabdelwahab@mans.edu.eg</u>or algehadalhaq@yahoo.com. Walaa S. Aboelmaaty: e-mail: walaa\_safwat@mans.edu.egor walaa\_m\_s@yahoo.com Mohamed Farid Lahloub: e-mail: mfilah@yahoo.com.

#### ORCID

Gehad Abdel Wahab: 0000-0001-6424-2445 Walaa S. Aboelmaaty: 0000-0002-7806-7884 Mohamed Farid Lahloub: 0000-0001-6769-3145 Amal Sallam: 0000-0003-3577-2046

# *In vitro* and *in silico* studies of SARS-CoV-2 main protease M<sup>pro</sup> inhibitors isolated from *Helichrysum bracteatum*

#### Abstract

Discovering SARS-CoV-2 inhibitors from natural sources is still a target that capture the interest of many researchers. In this study, the methanolic extract of Helichrysum bracteatum leaves besides compounds (1-18) isolated and identified from it were evaluated in vitro for their inhibitory activities against SARS-CoV-2 main protease (Mpro) using Fluorescence Resonance Energy Transfer assay (FRET-based assay). Based on 1D and 2D spectroscopic techniques, compounds (1-18) were identified as  $24-\beta$ -ethyl-cholesta-5(6),22(23),25(26)-triene-3-ol (1),  $\alpha$ amyrin (2), linoleic acid (3), 24-*β*-ethyl-cholesta-5(6),22(23),25(26)-triene-3-O-*β*-D-glucoside (4), 1,3-propanediol-2-amino-1-(3,4)-methylenedioxyphenyl)(5), (-)-(7R,8R,8)R)-acuminatolide (6), (+)-piperitol (7), 5,7,4'-trihydroxy-8,3'-dimethoxy flavanone (8), 5,7,4'-trihydroxy-6methoxy flavanone (9), 4`,5-dihydroxy-3`,7,8-trimethoxyflavone (10), 5,7-dihydroxy-3`,4`,5`,8tetramethoxy flavone (11), 1,3-propanediol-2-amino-1-(4'-hydroxy-3'-methoxyphenyl)(12), 3',5',5,7-tetrahydroxy-6-methoxyflavanone (13), simplexoside (piperitol-O- $\beta$ -D-glucoside) (14), pinoresinol monomethyl ether- $\beta$ -D-glucoside (15), orientin (16), luteolin-3`-O- $\beta$ -D-glucoside (17) and 3,5-dicaffeoylquinic acid (18). Compounds 6, 12 and 14 showed comparable inhibitory activities against SARS-COV-2 Mpro with IC50 values of 0.917±0.05, 0.476±0.02 and  $0.610\pm0.03\mu$ M, respectively compared with the control lopinavir with an IC<sub>50</sub> value of  $0.225\pm0.01$ µM. The other tested compounds showed considerable inhibitory activities. Molecular docking study for the tested compounds was carried out to correlate their binding modes and affinities for SARS-COV-2 M<sup>pro</sup>enzyme with the *in vitro* results. Analyzing the results of the *in vitro* assay together with the obtained in silico results led to the conclusion that the phenylpropanoids, lignans and flavonoids could be considered suitable drug leads for developing anti-COVID-19 therapeutics. Moreover, the phenylpropanoid skeleton oxygenated at C3, C4 of the phenyl moiety and at C1, C3 of the propane part constitute an essential core of the SARS-COV-2 Mpro inhibitors, thus could be proposed as scaffold for the design of new anti-COVID-19 drugs.

Key words: *Helichrysum bracteatum*, FRET-based assay, SARS-COV-2 M<sup>pro</sup> inhibitors, Molecular docking, anti-COVID-19.

# **Content**

| Figures                                                                                                                | Page:    |
|------------------------------------------------------------------------------------------------------------------------|----------|
| Figure S1: <sup>1</sup> H NMR spectrum of compound 1 in CDCl <sub>3</sub>                                              | 5        |
| Figure S2: DEPT Q spectrum of compound 1 in CDCl <sub>3</sub>                                                          | 5        |
| Figure S3: <sup>1</sup> H NMR spectrum of compound 2 in CDCl <sub>3</sub>                                              | 6        |
| Figure S4: APT spectrum of compound 2 in CDCl <sub>3</sub>                                                             | 6        |
| Figure S5: <sup>1</sup> H NMR spectrum of compound 3 in CDCl <sub>3</sub>                                              | 7        |
| Figure S6: APT spectrum of compound 3 in CDCl <sub>3</sub>                                                             | 7        |
| Figure S7: <sup>1</sup> H NMR spectrum of compound 4 in DMSO- $d_6$                                                    | 8        |
| Figure S8: APT spectrum of compound 4 in DMSO- $d_6$                                                                   | 8        |
| Figure S9: <sup>1</sup> H NMR spectrum of compound 5 in CDCl <sub>3</sub>                                              | 9        |
| Figure S10: APT spectrum of compound 5 in CDCl <sub>3</sub>                                                            | 9        |
| Figure S11:HMBC correlations of compound 5                                                                             | 10       |
| Figure S12: <sup>1</sup> H NMR spectrum of compound 6 in CDCl <sub>3</sub>                                             | 11       |
| Figure S13: APT spectrum of compound 6 in CDCl <sub>3</sub>                                                            | 11       |
| <b>Figure S14:</b> <sup>1</sup> H NMR spectrum of compound 7 in CDCl <sub>3</sub>                                      | 12       |
| Figure S15: APT spectrum of compound 7 in CDCl <sub>3</sub>                                                            | 12       |
| Figure S16: <sup>1</sup> H NMR spectrum of compound 8 in CD <sub>3</sub> OD                                            | 13       |
| Figure S17:APT spectrum of compound 8 in CD <sub>3</sub> OD                                                            | 13       |
| Figure S18:HMBC spectrum of compound 8                                                                                 | 14       |
| Figure S19: <sup>1</sup> H NMR spectrum of compound 9 in CD <sub>3</sub> OD                                            | 15       |
| Figure S20: APT spectrum of compound 9 in CD <sub>3</sub> OD                                                           | 15       |
| Figure S21: <sup>1</sup> H NMR spectrum of compound 10 in DMSO- $d_6$                                                  | 16       |
| Figure S22: DEPT-Q spectrum of compound 10 in DMSO- $d_6$                                                              | 16       |
| Figure S23:HMBC spectrum of compound 10                                                                                | 17       |
| Figure S24: <sup>1</sup> H NMR spectrum of compound 11 in CDCl <sub>3</sub>                                            | 18       |
| Figure S25: APT spectrum of compound 11 in CDCl <sub>3</sub>                                                           | 18       |
| Figure S26: <sup>1</sup> H NMR spectrum of compound 12 in CDCl <sub>3</sub>                                            | 19       |
| Figure S27: APT spectrum of compound 12 in CDCl <sub>3</sub>                                                           | 19       |
| Figure S28: <sup>1</sup> H NMR spectrum of compound 13 in $CD_3OD$                                                     | 20       |
| Figure 29: 'H-NMR spectrum of compound 13 (expansion at $\delta$ (2.5-6.8 ppm)                                         | 21       |
| Figure S30: 'H-NMR spectrum of compound 13 (expansion at 8 (6.60-6.95 ppm)                                             | 22       |
| Figure S31: APT spectrum of compound 13 in $CD_3OD$                                                                    | 23       |
| Figure S32: HSQC spectrum of compound 13                                                                               | 24       |
| Figure S33: HSQU expansion spectrum of compound 13                                                                     | 25       |
| Figure 534: HMBC spectrum of compound 13                                                                               | 20       |
| Figure 555: HMBC expansion spectrum of compound 13                                                                     | 27       |
| Figure S36: LC-MS (* ESI) spectrum of compound 13                                                                      | 28       |
| Figure S5/A: Proposed fragmentation pattern for compound 13 according to HK-                                           | 29       |
| EST-WS positive mode spectrum<br>Eigung S37D: L C MS († ESI) from an attain of compound 12                             | 20       |
| Figure 55/D:LC-IVIS ( ESI) fragmentation of compound 15                                                                | 29<br>20 |
| Figure 550: Structural differences between compounds 8, 9& 15<br>Figure S20: Selected HMDC correlations of compound 12 | 3U<br>20 |
| Figure 557: Selected fivible correlations of compound 15<br>Figure 640: UNID spectrum of compound 14 in DMSO d         | 3U<br>21 |
| Figure 540: IT INVIK Spectrum of compound 14 in DMSO- <i>a</i> <sub>6</sub>                                            | 31<br>21 |
| Figure S41. AFT spectrum of compound 14 III DWSO- $a_6$                                                                | 21       |
| rigure 542; "IT INVIK spectrum of compound 15 in CD <sub>3</sub> OD                                                    | 32       |

| Figure S43: APT spectrum of compound 15 in CD <sub>3</sub> OD                                          | 32 |
|--------------------------------------------------------------------------------------------------------|----|
| Figure S44: <sup>1</sup> H NMR spectrum of compound 16 in DMSO- $d_6$                                  | 33 |
| Figure S45: APT spectrum of compound 16 in DMSO- $d_6$                                                 | 33 |
| Figure S46: <sup>1</sup> H NMR spectrum of compound 17 in CD <sub>3</sub> OD                           | 34 |
| Figure S47: APT spectrum of compound 17 in CD <sub>3</sub> OD                                          | 34 |
| Figure S48: HMBC spectrum of compound 17                                                               | 35 |
| Figure S49: <sup>1</sup> H NMR spectrum of compound 18 in CD <sub>3</sub> OD                           | 36 |
| Figure S50: APT spectrum of compound 18 in CD <sub>3</sub> OD                                          | 36 |
| Figure S51: SAR of compound 12 versus compound 5                                                       | 37 |
| Figure S52: SAR of compound 1 versus compound 4                                                        | 37 |
| Figure S53: SAR of compound 14 versus compound 7                                                       | 38 |
| Figure S54: SAR of compound 14 versus compound 15                                                      | 38 |
| Figure S55: The SARS-COV-2 M <sup>pro</sup> inhibition (IC <sub>50</sub> µg/ml) of methanolic extract, | 39 |
| fractionsand the isolated compounds against the standard lopinavir                                     |    |

| Tables                                                                                                                         | Page: |
|--------------------------------------------------------------------------------------------------------------------------------|-------|
| <b>Table S1:</b> UV $\lambda_{max}$ (nm) of compounds $\overline{8, 9, 13}$ , 10, 11, 16 & 17 in methanol and in               | 40    |
| different flavonoids shift reagents                                                                                            |       |
| Table S2: <sup>1</sup> H-NMR and APT values of compound 8, 9 and 13 in CD <sub>3</sub> OD                                      | 41    |
| Table S3: Key HMBC correlations of compound 13                                                                                 | 42    |
| <b>Table S4:</b> Results of the SARS-COV-2 M <sup>pro</sup> inhibitory activity of the methanolic                              | 42    |
| extract of the leaves of <i>H. bracteatum</i> and itsfractions compared with the standard                                      |       |
| lopinavir                                                                                                                      |       |
| <b>Table S5:</b> The SARS-COV-2 $M^{\text{proinhibition}}$ (IC <sub>50</sub> $\mu$ M), docking scores <sup>a</sup> and type of | 43    |
| binding interactions of the isolated compounds (1-18) and the standard compound                                                |       |
| (lopinavir)                                                                                                                    |       |
| <b>Table S6:</b> 2D binding mode and residues involved in the recognition of the standard                                      | 45    |
| lopinavir and the isolated compounds docked and minimized in the SARS-COV-2                                                    |       |
| M <sup>pro</sup> binding pocket                                                                                                |       |
| Table S7:A)3D binding mode and residues involved in the recognition the standard                                               | 52    |
| lopinavir and the isolated compounds docked and minimized in the SARS-COV-2                                                    |       |
| M <sup>pro</sup> binding pocket                                                                                                |       |
| <b>B</b> ) Surface and maps of the isolated compound compared to the standard lopinavir                                        |       |
|                                                                                                                                |       |
|                                                                                                                                | 50    |
| <b>Data S1:</b> Proton and carbon values of the isolated compound [1-18]                                                       | 59    |

| <b>Data S1:</b> Proton and carbon values of the isolated compou | und [1-18 |  |
|-----------------------------------------------------------------|-----------|--|
|-----------------------------------------------------------------|-----------|--|





# o c of B r r t c o b « B Z N H - 3: N e r r ff. F



#### Figure S4: APT spectrum of compound 2 in CDCl<sub>3</sub>





Figure S6: APT spectrum of compound 3 in CDCl<sub>3</sub>





Compound 5















Figure S18: HMBC spectrum of compound HM 8







**Compound 10** 





















Figure S30: <sup>1</sup>H-NMR spectrum of compound 13 (expansion at 8(6.60-6.95 ppm)



















149.49 146.79 13.51.71 13.51.71 146.79 146.71 146.71 100.66 111.91 100.66 111.91 100.66 101.91 100.66 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19

# Figure S41: APT spectrum of compound 14 in DMSO-d<sub>6</sub>





|             | Ω | Ζ | D | ii. | 16 | d | un | po | m | co | of | m | ru | ec | ds | ΡŢ | ŝ | S4 | re | ng | E |
|-------------|---|---|---|-----|----|---|----|----|---|----|----|---|----|----|----|----|---|----|----|----|---|
| Compound 17 |   |   |   |     |    |   | _  |    |   |    |    |   |    | -  |    |    |   |    |    | -  |   |















Fi gu Fi SS R R SS Fi SS











Figure (S55): TheSARS-COV-2 $M^{pro}$ inhibition (IC<sub>50</sub> µg/ml) of methanolic extract, fractions and the isolated compounds against the standard lopinavir

| Comp<br>ounds | Band      | МеОН   | NaOCH <sub>3</sub> | AlCl <sub>3</sub> | AlCl <sub>3</sub> /<br>HCl | NaOAc | NaOAc/<br>H <sub>3</sub> BO <sub>3</sub> |  |  |  |
|---------------|-----------|--------|--------------------|-------------------|----------------------------|-------|------------------------------------------|--|--|--|
| Flavanones    |           |        |                    |                   |                            |       |                                          |  |  |  |
| 8             | Ι         | 236    | 245                | 235               | 235                        | 235   | 238                                      |  |  |  |
|               | II        | 289    | 327                | 310               | 309                        | 329   | 293                                      |  |  |  |
| 9             | Ι         | 232    | 243                | 231               | 231                        | 234   | 238                                      |  |  |  |
|               | II        | 291    | 326                | 307               | 311                        | 331   | 294                                      |  |  |  |
| 13            | Ι         | 234    | 238                | 236               | 234                        | 237   | 237                                      |  |  |  |
|               | II        | 289    | 291                | 293               | 308                        | 320   | 295                                      |  |  |  |
| Flavon        | es        |        |                    |                   |                            |       |                                          |  |  |  |
| 10            | Ι         | 345    | 410                | 357               | 351                        | 409   | 328                                      |  |  |  |
|               | II        | 276    | 270                | 307               | 306                        | 272   | 276                                      |  |  |  |
| 11            | Ι         | 323    | 306                | 345               | 345                        | 314   | 313                                      |  |  |  |
|               | II        | 278    | 287                | 310               | 310                        | 294   | 299                                      |  |  |  |
| Glucos        | idated fl | avones |                    |                   |                            |       |                                          |  |  |  |
| 16            | Ι         | 346    | 406                | 424               | 382                        | 392   | 380                                      |  |  |  |
|               | II        | 271    | 277                | 346               | 361                        | 277   | 268                                      |  |  |  |
| 17            | Ι         | 331    | 387                | 363               | 364                        | 397   | 336                                      |  |  |  |
|               | II        | 271    | 279                | 342               | 339                        | 310   | 290                                      |  |  |  |

Table S1: UV  $\lambda_{max}$  (nm) of compounds 8, 9, 13, 10, 11, 16 & 17 in methanol and in different shift reagents

Table

| C/H              | Compound H                    | IM 8  | Compound                 | HM 9                                | Compour             | 13                         | <b>S2:</b>         |                 |  |  |
|------------------|-------------------------------|-------|--------------------------|-------------------------------------|---------------------|----------------------------|--------------------|-----------------|--|--|
| Positi           | [5,7,4 <sup>`</sup> - trihyd  | roxy- | [5,7,4`-trihyd           | hydroxy-6- [3`,5`,5,7-tetrahydroxy- |                     | [3`,5`,5,7-tetrahydroxy-6- |                    |                 |  |  |
| on               | 8,3'- dimethoxy               |       | methoxy flavanone]       |                                     | methoxyflavanone]   |                            | one] methoxyflavan |                 |  |  |
|                  | flavanone                     | ;]    | -                        | _                                   |                     |                            | _                  |                 |  |  |
|                  | <sup>1</sup> H-NMR            | APT   | <sup>1</sup> H-NMR       | APT                                 | <sup>1</sup> H-NMR  | APT                        |                    | and             |  |  |
| 2                | 5.18 (1H, dd,                 | 79.2  | 5.22 (1H,                | 79.2                                | 5.16 (1H,           | 79.2                       | CH                 | ADT             |  |  |
|                  | $J_1 = 2.8, J_2 =$            |       | dd, $J_1 = 2.8$ ,        |                                     | dd, <i>J</i> = 2.8, |                            |                    | AFI             |  |  |
|                  | 12.6)                         |       | $J_2 = 13)$              |                                     | 12.8)               |                            |                    | value           |  |  |
| 3                | <b>3</b> <i>α</i> = 2.56 (1H, | 42.7  | <b>3</b> <i>α</i> = 2.60 | 42.7                                | <b>3</b> α= 2.60    | 42.7                       | CH <sub>2</sub>    | of              |  |  |
|                  | dd, $J_1 = 2.8$ ,             |       | $(1H, dd, J_1 =$         |                                     | (1H, dd, <i>J</i> = |                            |                    | UI              |  |  |
|                  | $J_2 = 17.2$ )                |       | $2.8, J_2 = 17)$         |                                     | 2.8, 17.2)          |                            |                    | comp            |  |  |
|                  | <b>3β</b> = 2.97 (1H,         |       | <b>3β</b> = 3.01         |                                     | <b>3β</b> = 2.96    |                            |                    | und             |  |  |
|                  | dd, $J_1$ = 12.8,             |       | (1H, dd, <i>J</i> =      |                                     | (1H, dd, <i>J</i> = |                            |                    |                 |  |  |
|                  | $J_2 = 17.2$ )                |       | 12.8, 17.2)              |                                     | 12.8, 17.2)         |                            |                    | 9 and           |  |  |
| 4                |                               | 195.7 |                          | 197.2                               |                     | 197.2                      | Q                  | 13in            |  |  |
| 5                |                               | 159.0 |                          | 155.2                               |                     | 155.2                      | Q                  | 15111           |  |  |
| 6                | 5.79 (1H, s)                  | 96.3  |                          | 129.0                               |                     | 129.0                      | Q                  | CD <sub>3</sub> |  |  |
| 7                |                               | 164.6 |                          | 159.4                               |                     | 159.5                      | Q                  | D*              |  |  |
| 8                |                               | 130.7 | 5.87 (1H, s)             | 94.8                                | 5.87 (1H, s)        | 94.8                       | CH                 |                 |  |  |
| 9                |                               | 155.0 |                          | 157.6                               |                     | 158.8                      | Q                  |                 |  |  |
| 10               |                               | 100.7 |                          | 102.1                               |                     | 102.1                      | Q                  |                 |  |  |
| OCH <sub>3</sub> | 3.66 (3H, s)                  | 59.4  | 3.67 (3H, s)             | 59.6                                | 3.68 (3H, s)        | 59.6                       | CH <sub>3</sub>    |                 |  |  |
| OCH <sub>3</sub> | 3.78 (3H, s)                  | 55.1  |                          |                                     |                     |                            |                    |                 |  |  |
| 1`               |                               | 130.1 |                          | 129.7                               |                     | 130.3                      | Q                  |                 |  |  |
| 2`               | 6.97 (1H, d,                  | 109.8 | 7.21 (2H, d,             | 127.6                               | 6.68 (2H, s)        | 117.9                      | CH                 |                 |  |  |
|                  | J=1.6)                        |       | J= 8.4)                  |                                     |                     |                            |                    |                 |  |  |
| 3`               |                               | 147.7 | 6.71 (2H, d,             | 114.9                               |                     | 145.1                      | Q                  |                 |  |  |
|                  |                               |       | J = 8.8)                 |                                     |                     |                            | _                  |                 |  |  |
| 4`               |                               | 146.6 |                          | 158.8                               | 6.68 (2H, s)        | 114.8                      | CH                 | 1               |  |  |
| 5`               | 6.71 (1H, d,                  | 114.7 | 6.71 (2H, d,             | 114.9                               |                     | 145.5                      | Q                  |                 |  |  |
|                  | J= 8)                         |       | J= 8.8)                  |                                     |                     |                            |                    |                 |  |  |
| 6                | 6.81 (1H, dd,                 | 119.0 | 7.21 (2H, d,             | 127.6                               | 6.81 (1H, s)        | 113.3                      | CH                 |                 |  |  |
|                  | $J_1 = 8.2, J_2 = 2$ )        |       | J= 8.4)                  |                                     |                     |                            |                    |                 |  |  |

\*  $\delta$  values of compounds **8**, **9**& **13** are expressed in ppm and coupling constants (*J*) in Hz. <sup>1</sup>H-NMR and APT were measured in CD<sub>3</sub>ODat 400 and 100 MHz respectively.

Table S3: HMBC correlations of compound 13 deduced from HMBC (Figures S34,S35&S39)

| Proton           | Proton (Values in ppm) | Correlated Carbon (s) (Values in ppm)            |
|------------------|------------------------|--------------------------------------------------|
| OCH <sub>3</sub> | 3.68                   | 129.0 (C-6)                                      |
| H-8              | 5.87                   | 129.0 (C-6), 159.5 (C-7), 158.8 (C-9), 102.1 (C- |
|                  |                        | 10)                                              |
| H- 2`            | 6.68                   | 130.3 (C-1`), 114.8 (C-4`), 145.1 (C-3`), 145.5  |
|                  |                        | (C-5`), 113.3 (C-6`), 79.2 (C-2)                 |
| H-4`             | 6.68                   | 145.1 (C-3`), 145.5 (C-5`)                       |
| H-6`             | 6.81                   | 117.9 (C-2`), 145.1 (C-3`), 145.5 (C-5`), 79.2   |
|                  |                        | (C-2)                                            |

Table S4: Results of the SARS-COV-2M pro inhibitory activity of the methanolic extract ofthe leaves of *H. bracteatum* and its fractions compared with the standard lopinavir

| Extract& Fractions   | In vitroSARS-COV-2M pro  |
|----------------------|--------------------------|
|                      | IC <sub>50</sub>         |
|                      | IC <sub>50</sub> (µg/ml) |
| Lopinavir (Standard) | <b>0.141</b> ±0.01       |
| Methanolic extract   | 14.47±0.74               |
| Pet. ether fraction  | 3.466±0.18               |
| Methylene fraction   | 16.05±0.82               |
| Ethyl fraction       | 2.589±0.13               |
| Butanol fraction     | 21.9±1.12                |

| Comp-  | Compounds (name)             | In<br>In              | Binding           | Type of binding interactions |
|--------|------------------------------|-----------------------|-------------------|------------------------------|
| Ound   |                              | -COV-2                | energy<br>(kcal/m |                              |
| (code) |                              | M <sup>pro</sup> IC50 | ol)               |                              |
|        |                              | uM IC <sub>50</sub>   | (dockin           |                              |
|        |                              | (µmole)               | g score)          |                              |
| Stand- | Loninavir                    | 0.225±0.01            | -9.61             | H-bond with Glu 166 & Gln    |
| ard    | Lopinavii                    |                       |                   | 189                          |
| 1      | 24- $\beta$ -ethyl-cholesta- |                       |                   | H-bond with Glu 166 & Phe    |
|        | 5(6),22(23),25(26)-triene-   | 12.51±0.64            | -9.99             | 140                          |
|        | 3-ol                         |                       |                   |                              |
| 2      | α-amyrin                     | 4.185±0.21            | -10.29            | H-bond with Glu 166          |
| 3      | Linoleic acid                | 20 67+1 05            | -10 39            | H-bond with Thr 190 & Arg    |
|        |                              | 20.07±1.05            | 10.57             | 188                          |
|        | 24- $\beta$ -ethyl-cholesta- |                       |                   |                              |
| 4      | 5(6),22(23),25(26)-triene-   | 89.99±4.59            | -11.92            | Three H-bonds with Gln 189   |
|        | $3-O-\beta-D-glucoside$      |                       |                   |                              |
|        | 1,3-propanediol-2-amino-1-   |                       |                   | -Two H-bonds with Gln 189    |
| 5      | (3`,4`-methylene             | 8.532±0.43            | -8.97             | - H-bond with Glu 166 & Gln  |
|        | dioxyphenyl)                 |                       |                   | 192                          |
| 6      | $(-)-(7R,8R,8^{R})-$         | 0.917+0.05            | _9 39             | H-bond with Glu 166 & Ser    |
|        | acuminatolide                | 0.917±0.05            | ,,                | 144                          |
| 7      | (+)-piperitol                | 16 31+0 83            | _12.34            | H-bond with Glu 166, Ser 46, |
|        |                              | 10.31±0.03            | -12.34            | Thr 25 & Thr 45              |
| 8      | 5,7,4`-trihydroxy-8,3`-      | 27.86±1.42            | -12.69            | H-bond with Glu 166, Gly     |

Table S5: The SARS-COV-2M  $^{\rm pro}$ inhibition (IC<sub>50</sub>  $\mu M$ ), docking scores<sup>a</sup> and type of binding interactions of the isolated compounds (1-18) and the standard compound (lopinavir)

|    | dimethoxy flavanone        |                 |        | 143 & Leu 141              |
|----|----------------------------|-----------------|--------|----------------------------|
| 9  | 5,7,4`-trihydroxy-6-       |                 |        | -H-bond with Glu 166, Gly  |
|    | methoxy flavanone          | 11.83±0.6       | -11.49 | 143& Ser 144               |
|    | -                          |                 |        | -Two H-bonds with His 163  |
| 10 | 4`,5-dihydroxy-3`,7,8-     |                 |        | -H-bond with Glu 166 & Leu |
|    | trimethoxyflavone          | 12.83±0.65      | -13.45 | 141                        |
|    |                            |                 |        | - Two H-bonds with Gly 143 |
| 11 | 5,7-dihydroxy- 3`,4`,5`,8- | 5 060 10 26     | 12 40  | H-bond with Glu 166, Cys   |
|    | tetramethoxy flavone       | 5.009±0.20      | -12.48 | 145, Gly 143 & Ser 144     |
|    | 1,3-propanediol-2-amino-1- |                 |        | -Two H-bonds with Glu 166  |
| 12 | (4`-hydroxy-3`-            | 0.476±0.02      | -10.79 | - H-bond with Gln 189, Thr |
|    | methoxyphenyl)             |                 |        | 190 & Arg 188              |
| 13 | 3`,5`,5,7-tetrahydroxy-6-  | 5 5 6 5 1 0 2 9 | 12.01  | H-bond with Glu 166, His   |
|    | methoxyflavanone           | 3.363±0.28      | -12.81 | 163 & Leu 167              |

| 14 | Simplexoside (piperitol-O- $\beta$ -D-glucoside) | 0.61±0.03  | -12.96 | -H-bond with Gln 189, Glu<br>166, Thr 26, Thr 24 & Ser 46<br>-Two H-bonds with Gly 143                  |
|----|--------------------------------------------------|------------|--------|---------------------------------------------------------------------------------------------------------|
| 15 | Pinoresinol monomethyl<br>ether-β-D-glucoside    | 11.46±0.58 | -11.69 | -Three H- bonds with Glu 166<br>-Two H-bonds with Thr 190<br>- H-bond with Gln 192, Thr<br>26 & Arg 188 |
| 16 | Orientin                                         | 27.5±1.4   | -14.34 | -Two H-bonds with Glu 166<br>- H-bond with His 163 & Arg<br>188                                         |
| 17 | Luteolin 3`-O-β-D-<br>glucoside                  | 10.12±0.52 | -15.61 | -Two H-bonds with Glu 166<br>- H-bond with His 163, Phe<br>140, Thr 24 & Thr 25                         |
| 18 | 3,5-dicaffeoylquinic acid                        | 4.74±0.24  | -16.24 | -H-bond with Glu 166, Gln<br>189, Leu 141 & Thr 25                                                      |

[a] Docking was performed using MOE 2009.10 towards the active site of M <sup>pro</sup> (code: 6LU7)

[b] All data are presented as mean value  $\pm$  SD for three independent experiments.

[c] Lopinavir was used as a positive control.

Table S6: 2D binding mode and residues involved in the recognition of the standard lopinavir and the isolated compounds docked and minimized in the SARS-COV-2M<sup>pro</sup>binding pocket



Code 2D binding mode and residues















Table (S7): A) 3D binding mode and residues involved in the recognition the standard lopinavir and the isolated compounds docked and minimized in the SARS-COV-2M<sup>pro</sup>binding pocket

| B) | Surface and | maps of the | e isolated | compound | compared t | o the standar                           | d lopinavir |
|----|-------------|-------------|------------|----------|------------|-----------------------------------------|-------------|
| _, | ,           |             |            | p m      |            | • • • • • • • • • • • • • • • • • • • • |             |

| No.           | Name of   | Α                                                                   | В |
|---------------|-----------|---------------------------------------------------------------------|---|
|               | compounds |                                                                     |   |
| Stan-<br>dard | Lopinavir | Ala191<br>Cin192<br>Thr 100<br>Cin189<br>Cin189<br>Met185<br>His164 |   |









![](_page_63_Figure_0.jpeg)

![](_page_64_Figure_0.jpeg)

#### Data S1

**Compound 1** (24-*β*-ethyl-cholesta-5(6),22(23),25(26)-triene-3-ol) was obtained as white powder. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz): 3.49 (m, H-3), 5.32 (1H, d, *J*= 5.2 Hz, H-6), 0.67 (s, H-18), 0.99 (br s, H-19), 0.98 (br s, H-21), 5.22 (1H, dd, *J*= 15.2 & 8 Hz, H-22), 5.13 (1H, dd, *J*= 15.2 & 8 Hz, H-23), 4.67-4.69 (2H, m, H-26), 1.62 (s, H-27), 0.82 (1H, d, *J*= 7.6 Hz, H-29). DEPT Q (CDCl<sub>3</sub>, 100 MHz): 37.3 (C-1), 31.7 (C-2), 71.8 (C-3), 39.8 (C-4), 140.8 (C-5), 121.7 (C-6), 31.9 (C-7), 31.9 (C-8), 50.1 (C-9), 36.5 (C-10), 21.1 (C-11), 39.7 (C-12), 42.3 (C-13), 56.9 (C-14), 24.3 (C-15), 28.7 (C-16), 55.9 (C-17), 12.1 (C-18), 19.4 (C-19), 40.2 (C-20), 20.8 (C-21), 137.2 (C-22), 130.0 (C-23), 52.0 (C-24), 148.7 (C-25), 109.5 (C-26), 20.3 (C-27), 25.7 (C-28), 12.2 (C-29).

**Compound 2** (*α*-amyrin) was obtained as oily substance. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz): 3.15 (m, H-3), 5.11 (t, H-12), 0.94 (s, 3H, H-23), 0.85 (s, 3H, H-24), 0.79 (m, H-25), 0.89 (s, 3H, H-26), 1.00 (s, 3H, H-27), 0.93 (s, 3H, H-28), 0.89 (s, 3H, H-29), 0.73 (s, 3H, H-30). APT (CDCl<sub>3</sub>, 100 MHz): 38.8 (C-1), 27.3 (C-2), 77.4 (C-3), 38.5 (C-4), 55.2 (C-5), 18.4 (C-6), 32.9 (C-7), 40.0 (C-

8), 47.7 (C-9), 36.8 (C-10), 23.4 (C-11), 124.4 (C-12), 139.6 (C-13), 42.0 (C-14), 29.4 (C-15), 26.6 (C-16), 33.8 (C-17), 59.1 (C-18), 39.7 (C-19), 39.6 (C-20), 31.3 (C-21), 41.5 (C-22), 28.8 (C-23), 15.7 (C-24), 15.6 (C-25), 16.9 (C-26), 23.4 (C-27), 28.2 (C-28), 17.5 (C-29), 21.4 (C-30).

**Compound 3** (linoleic acid) was obtained as white powder. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz): 2.32 (H-2), 1.61 (H-3), 1.29 (H-4), 1.29 (H-7), 2.07 (H-8), 5.34 (H-9,10), 2.78 (H-11), 5.34 (H-12,13), 1.29 (H-15&17), 0.97 (H-18). APT (CDCl<sub>3</sub>, 100 MHz): 179.1 (C-1), 33.9 (C-2), 24.7 (C-3), 29.0 (C-4), 29.3 (C-5), 29.6 (C-6), 29.7 (C-7), 27.2 (C-8), 130.3 (C-9), 128.3 (C-10), 25.5 (C-11), 130.1 (C-12), 127.9 (C-13), 25.6 (C-14), 29.4 (C-15), 31.9 (C-16), 22.7 (C-17), 14.3 (C-18).

**Compound 4** (24-β-ethyl-cholesta-5(6),22(23),25(26)-triene-3-O-β-D-glucoside) was obtained as white powder. <sup>1</sup>H NMR (DMSO- *d*<sub>6</sub>, 400 MHz): 3.66 (m, H-3), 5.34 (m, H-6), 0.68 (s, H-18), 0.99 (s, H-19), 0.97 (s, H-21), 5.28-5.14 (m, H-22,23), 4.91 (m, H-26), 1.62 (s, H-27), 0.80 (s, H-29), 5.03 (d, *J*= 8.8 Hz, H-1<sup>•</sup>), 4.24 (d, *J*= 7.6 Hz, H-2<sup>•</sup>), 4.70 (m, H-3<sup>•</sup>, 4<sup>•</sup>), 3.66 (m, H-5<sup>•</sup>), 4.46 (t, *J*= 11.2 Hz, 5.6 Hz, H-6<sup>•</sup>a), 4.70 (m, H-6<sup>•</sup>b). APT (DMSO- *d*<sub>6</sub>, 100 MHz): 37.3 (C-1), 29.7 (C-2), 77.2 (C-3), 42.3 (C-4), 140.9 (C-5), 121.7 (C-6), 31.9 (C-7&8), 50.1 (C-9), 36.7 (C-10), 21.1 (C-11), 38.7 (C-12), 42.3 (C-13), 56.7 (C-14), 24.3 (C-15), 28.8 (C-16), 55.7 (C-17), 12.3 (C-18), 19.6 (C-19), 40.6 (C-20), 21.2 (C-21), 137.3 (C-22), 130.0 (C-23), 51.7 (C-24), 148.2 (C-25), 110.5 (C-26), 20.4 (C-27), 25.7 (C-28), 12.5 (C-29), 101.2 (C-1<sup>•</sup>), 73.9 (C-2<sup>•</sup>), 77.4 (C-3<sup>•</sup>), 70.6 (C-4<sup>•</sup>), 77.2 (C-5<sup>•</sup>), 61.6 (C-6<sup>•</sup>).

**Compound 5** (1,3-propanediol-2-amino-1-(3',4'-methylenedioxyphenyl) or (1',3'-propanediol-2'-amino-1'-(1,3-benzodioxol-5-yl)) was obtained as white powder. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz): 4.72 (d, 1H, J = 3.2 Hz, H-1), 3.05 (m, 1H, H-2), 4.23 (dd, 1H, J = 6.4 Hz, 8.4 Hz, H-3a), 3.87 (dd, 1H, J = 6.8 Hz, 2 Hz, H-3b), 6.85 (br s, 1H, H-2'), 6.78 (br d, 1H, J= 8, H-5'), 6.80 (br d, 1H, J= 10.8, H-6'), 5.95 (s, 2H, OCH<sub>2</sub>O). APT (CDCl<sub>3</sub>, 100 MHz): 85.8 (C-1), 54.3 (C-2), 71.7 (C-3), 135.0 (C-1'), 106.5 (C-2'), 148.0 (C-3'), 147.1 (C-4'), 108.2 (C-5'), 119.4 (C-6'), 101.1 (OCH<sub>2</sub>O).

**Compound 6** ((-)-(7*R*,8*R*,8`*R*)-acuminatolide) was obtained as white powder. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz): 6.84& 6.79 (br. s, 3H aromatic), 5.97 (s, 2H, OCH<sub>2</sub>O), 4.60 (d, 1H,  $J_{7,8}$ = 6.8 Hz, H-7), 3.06-3.11 (m, 1H, H-8), 3.44 (ddd, 1H,  $J_{7,8}$ = 3.6 Hz,  $J_{8`,9`eq}$  = 3.6 Hz,  $J_{8`,8}$  = 3.6 Hz, H-8`), 4.49 (dd, 1H,  $J_{9eq,9ax}$ = 6.8,  $J_{8,9eq}$  = 6.8, H-9eq), 4.38-4.31 (m, 2H, H-9ax & H-9`ax), 4.19 (dd, 1H,  $J_{9`eq,9`ax}$ = 3.6,  $J_{8`,9`eq}$ = 3.6, H-9`eq). APT (CDCl<sub>3</sub>, 100 MHz): 132.7 (C-1), 106.4 (C-2), 148.2 (C-3), 147.8 (C-4), 108.4 (C-5), 119.7 (C-6), 101.3 (OCH<sub>2</sub>O), 86.1 (C-7), 178.1 (C-7`), 48.4 (C-8), 46.0 (C-8`), 70.1 (C-9), 69.8 (C-9`).

**Compound 7** ((+)-piperitol) was obtained as white powder. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz): 6.77-6.89 (6H, m, Ar-H), 5.95 (s, 2H, OCH<sub>2</sub>O), 3.89 (s, 3H, OCH<sub>3</sub>) 5.68 (s, 1H, 4'- OH), 4.73 (2H, d, *J*= 2, H-7&7'), 3.03-3.12 (2H, m, H-8&8'), 4.21- 4.27 (2H, m, H-9a&9'a), 3.86-3.89 (2H, m, H-9b&9'b). APT (CDCl<sub>3</sub>, 100 MHz): 135.1 (C-1), 106.5 (C-2), 147.9 (C-3), 147.1 (C-4), 108.6 (C-5),

119.4 (C-6),101.1 (OCH<sub>2</sub>O), 132.9 (C-1`), 108.2 (C-2`), 146.7 (C-3`), 145.3 (C-4`), 114.3 (C-5`), 118.9 (C-6`), 55.9 (OCH<sub>3</sub>),85.9 (C-7), 85.8 (C-7`), 54.3 (C-8), 54.2 (C-8`), 71.7 (C-9&9`).

**Compound 8** (5,7,4<sup>\*</sup>-trihydroxy-8,3<sup>\*</sup>-dimethoxyflavanone) was obtained as yellowish white powder. <sup>1</sup>H NMR (CD<sub>3</sub>OD, 400 MHz): 5.18 (1H, dd, J= 2.8 Hz, 12.6 Hz, H-2), 2.56 (1H, dd, J= 2.8 Hz, 17.2 Hz, H-3 $\alpha$ ), 2.97 (1H, dd, J= 12.8 Hz, 17.2 Hz, H-3 $\beta$ ), 5.79 (s, 1H, H-6), 3.66 (s, 3H, R<sub>4</sub>), 3.78 (s, 3H, R<sub>5</sub>), 6.97 (1H, d, J= 1.6 Hz, H-2<sup>\*</sup>), 6.71 (1H, d, J= 8 Hz, H-5<sup>\*</sup>), 6.81 (1H, dd, J= 8.2 Hz, 2 Hz, H-6<sup>\*</sup>). APT (CD<sub>3</sub>OD, 100 MHz): 79.2 (C-2), 42.7 (C-3), 195.7 (C-4), 159.0 (C-5), 96.3 (C-6), 164.6 (C-7), 130.7 (C-8), 155.0 (C-9), 100.7 (C-10), 59.4 (R<sub>4</sub>), 55.1 (R<sub>5</sub>), 130.1 (C-1<sup>\*</sup>), 109.8 (C-2<sup>\*</sup>), 147.7 (C-3<sup>\*</sup>), 146.6 (C-4<sup>\*</sup>), 114.7 (C-5<sup>\*</sup>), 119.0 (C-6<sup>\*</sup>).

**Compound 9** (5,7,4'-trihydroxy-6-methoxy flavanone) was obtained as yellowish white powder. <sup>1</sup>H NMR (CD<sub>3</sub>OD, 400 MHz): 5.22 (1H, dd, J= 2.8 Hz, 13 Hz, H-2), 2.60 (1H, dd, J= 2.8 Hz, 17 Hz, H-3 $\alpha$ ), 3.01 (1H, dd, J= 12.8 Hz, 17.2 Hz, H-3 $\beta$ ), 5.87 (s, 1H, H-8), 3.67 (s, 3H, OCH<sub>3</sub>), 7.21 (2H, d, J= 8.4 Hz, H-2',6'), 6.71 (2H, d, J= 8 Hz, H-3',5'). APT (CD<sub>3</sub>OD, 100 MHz): 79.2 (C-2), 42.7 (C-3), 197.2 (C-4), 155.2 (C-5), 129.0 (C-6), 159.4 (C-7), 94.8 (C-8), 157.6 (C-9), 102.1 (C-10), 59.6 (OCH<sub>3</sub>), 129.7 (C-1'), 127.6 (C-2',6'), 114.9 (C-3',5'), 158.8 (C-4').

**Compound 10** (4`,5-dihydroxy-3`,7,8-trimethoxyflavone) was obtained as yellow powder. <sup>1</sup>H NMR (DMSO-  $d_6$ , 400 MHz): 6.99 (1H, s, H-3), 6.59 (1H, s, H-6), 3.92 (3H, s, R<sub>3</sub>), 3.86 (3H, s, R<sub>4</sub>), 7.59 (1H s, H-2`), 7.00 (1H, br d, J= 6.7 Hz, H-5`), 7.60 (1H, d, J= 6.0 Hz, H-6`), 3.90 (3H, s, R<sub>5</sub>), 12.97 (5-OH), 10.08 (4`-OH). DEPT Q (DMSO-  $d_6$ , 100 MHz): 164.3 (C-2), 103.5 (C-3), 182.7 (C-4), 157.1 (C-5), 96.4 (C-6), 158.8 (C-7), 128.9 (C-8), 151.4 (C-9), 104.3 (C-10), 56.9 (R<sub>3</sub>), 61.6 (R<sub>4</sub>), 121.9 (C-1`), 110.4 (C-2`), 149.2 (C-3`), 148.5 (C-4`), 116.6 (C-5`), 120.8 (C-6`), 56.5 (R<sub>5</sub>).

**Compound 11** (5,7-dihydroxy-3`,4`,5`,8-tetramethoxy flavone) was obtained as yellow substance. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz): 6.62 (1H, s, H-3), 6.43 (1H, s, H-6), 4.00 (3H, s, R<sub>4</sub>), 7.13 (2H, s, H-2`,6`), 3.95 (6H, s, R<sub>5</sub>, R<sub>7</sub>), 3.94 (3H, s, R<sub>6</sub>). APT (CDCl<sub>3</sub>, 100 MHz): 163.2 (C-2), 105.4 (C-3), 182.4 (C-4), 155.5 (C-5), 99.0 (C-6), 157.7 (C-7), 126.9 (C-8), 148.9 (C-9), 105.1 (C-10), 61.8 (R<sub>4</sub>), 126.3 (C-1`), 103.7 (C-2`,6`), 153.7(C-3`,5`), 141.6 (C-4`), 56.3 (R<sub>5</sub>, R<sub>7</sub>), 61.1 (R<sub>6</sub>).

**Compound 12** (1,3-propanediol-2-amino-1-(4'-hydroxy-3'-methoxyphenyl) was obtained as colorless needles. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz): 4.74 (d, 1H, *J*= 4 Hz, H-1), 3.10 (m, 1H, H-2), 4.25 (dd, 1H, *J*=9.2 & 6.4 Hz, H-3a), 3.88 (dd, 1H, *J*=9.2 Hz, 3.6 Hz, H-3b), 6.90 (d, 1H, *J*= 2 Hz, H-2`), 6.89 (d, 1H, *J*= 7.6 Hz, H-5`), 6.82 (dd, 1H, *J*= 8.2 Hz, 1.6 Hz, H-6`), 3.91 (s, 3H, OCH<sub>3</sub>). APT (CDCl<sub>3</sub>, 100 MHz): 85.9 (C-1), 54.2 (C-2), 71.7 (C-3), 132.9 (C-1`), 108.6 (C-2`), 146.7 (C-3`), 145.3 (C-4`), 114.3 (C-5`), 118.9 (C-6`), 55.9 (OCH<sub>3</sub>).

**Compound 13** (3`,5`,5,7-tetrahydroxy-6-methoxyflavanone) was obtained as yellow powder. <sup>1</sup>H NMR (CD<sub>3</sub>OD, 400 MHz): 5.16 (1H, dd, J= 2.8 Hz, 12.8 Hz, H-2), 2.60 (1H, dd, J= 2.8 Hz, 17.2 Hz, H-3 $\alpha$ ), 2.96 (1H, dd, J= 12.8 Hz, 17.2 Hz, H-3 $\beta$ ), 5.87 (1H, s, H-8), 3.68 (s, 3H, OCH<sub>3</sub>), 6.68 (2H, s, H-2`,4`), 6.81 (1H, s, H-6`). APT (CD<sub>3</sub>OD, 100 MHz): 79.2 (C-2), 42.7 (C-3), 197.2 (C-4), 155.2 (C-5), 129.0 (C-6), 159.5 (C-7), 94.8 (C-8), 158.8 (C-9), 102.1 (C-10), 59.6 (OCH<sub>3</sub>), 130.3 (C-1`), 117.9 (C-2`), 145.1 (C-3`), 114.8 (C-4`), 145.5 (C-5`),113.3 (C-6`).

**Compound 14** (simplexoside (piperitol-O- $\beta$ -D-glucoside)) was obtained as white powder. <sup>1</sup>H NMR (DMSO-  $d_6$ , 400 MHz): 6.86- 7.06 (6H, m, aromatic protons), 3.78 (s, 3H, OCH<sub>3</sub>), 6.00 (s, 2H, OCH<sub>2</sub>O), 4.67 (s, 2H, H-7&7`), 3.04 (2H, m, H- 8&8`), 4.14 (2H, t, J= 15.6, 7.1, H-9a,9`a), 3.66-3.69 (2H, d, J= 11.4, H-9b, 9`b), 4.88 (1H, s, J= 6.7 Hz, H-1``), 3.37 (m, protons of sugar). APT (DMSO-  $d_6$ , 100 MHz): 135.9 (C-1), 107.1 (C-2), 149.4 (C-3), 147.9 (C-4), 111.0 (C-5), 119.9 (C-6), 101.4 (OCH<sub>2</sub>O), 135.6 (C-1`), 108.5 (C-2`), 146.9 (C-3`), 146.3 (C-4`), 115.6 (C-5`), 118.6 (C-6`), 56.2 (OCH<sub>3</sub>), 85.4 (C-7), 85.3 (C-7`), 54.2 (C-8), 54.1 (C-8`), 71. 6 (C-9), 71.5 (C-9`), 100.6 (C-1``), 73.7 (C-2``), 77.3 (C-3``), 70.1 (C-4``), 77.4 (C-5``), 61.1 (C-6``).

**Compound 15** (pinoresinol monomethyl ether- $\beta$ -D-glucoside) was obtained as white powder. <sup>1</sup>H NMR (CD<sub>3</sub>OD, 400 MHz): 6.85 (d, J=2 Hz, 1H, H-2), 6.66 (d, J=8 Hz, 1H, H-5), 6.71 (dd, J=8.2 Hz, 2 Hz, 1H, H-6), 3.76 (s, 6H, R<sub>1,2</sub>), 6.93 (d, J=2 Hz, 1H, H-2`), 7.05 (d, J=8.4 Hz, 1H, H-5`), 6.82 (dd, J=8 Hz, 2 Hz, 1H, H-6`), 3.77 (s, 3H, R<sub>3</sub>), 4.61 (d, J=4 Hz, 1H, H-7), 4.66 (d, J=4 Hz, 1H, H-7`), 3.04 (m, 2H, H-8&8`), 3.53-3.61 (m, 2H, H-9a&9`a), 4.12-4.17 (m, 2H, H-9b& 9`b), 4.78 (d, J=7.2 Hz, 1H, H-1``), 3.29-3.41 (m, 4H, H- 2``,3``,4``,5``), 3.53-3.61 (m, 2H, H-6``a, 6``b). APT (CD<sub>3</sub>OD, 100 MHz): 132.3 (C-1), 109.5 (C-2), 147.7 (C-3), 146.1 (C-4), 114.7 (C-5), 118.6 (C-6), 54.9 (R<sub>1&</sub>R<sub>2</sub>), 136.0 (C-1`), 110.1 (C-2`), 149.5 (C-3`), 145.9 (C-4`), 116.6 (C-5`), 118.4 (C-6`), 55.3 (R<sub>3</sub>), 86.1 (C-7), 85.7 (C-7`), 54.1 (C-8), 53.9 (C-8`), 71.3 (C-9&9`), 101.4 (C-1``), 73.5 (C-2``), 76.4 (C-3``), 69.9 (C-4``), 76.8 (C-5``), 61.1 (C-6`).

**Compound 16** (orientin) was obtained as yellow powder. <sup>1</sup>H NMR (DMSO- *d*<sub>6</sub>, 400 MHz):6.68 (s, 1H, H-3), 6.29 (s, 1H, H-6), 7.51 (br s, 1H, H-2<sup>'</sup>), 6.89 (d, *J*= 8.4 Hz, 1H, H-5<sup>'</sup>), 7.56 (br d, *J*= 8.4 Hz, 1H, H-6<sup>'</sup>), 4.70 (d, *J*= 9.6 Hz, 1H, H-1<sup>''</sup>), 3.26- 3.94 (m, 6H, H-2<sup>''</sup>, 3<sup>''</sup>, 4<sup>''</sup>, 5<sup>''</sup>, 6<sup>''</sup>a, 6<sup>''</sup>b), 13.20 (s, 5-OH).APT (DMSO- *d*<sub>6</sub>, 100 MHz): 164.6 (C-2), 102.9 (C-3), 182.5 (C-4), 160.9 (C-5), 98.7 (C-6), 163.1 (C-7), 105.0 (C-8), 156.5 (C-9), 104.5 (C-10), 122.5 (C-1<sup>'</sup>), 114.5 (C-2<sup>'</sup>), 146.3 (C-3<sup>'</sup>), 150.2 (C-4<sup>'</sup>), 116.1 (C-5<sup>'</sup>), 119.9 (C-6<sup>'</sup>), 73.9 (C-1<sup>''</sup>), 71.2 (C-2<sup>''</sup>), 79.2 (C-3<sup>''</sup>), 71.2 (C-4<sup>''</sup>), 82.5 (C-5<sup>''</sup>), 62.1(C-6<sup>''</sup>).

**Compound 17** (luteolin-3`-O- $\beta$ -D-glucoside) was obtained as yellow powder. <sup>1</sup>H NMR (CD<sub>3</sub>OD, 400 MHz): 6.52 (s, H-3), 6.12 (s, H-6), 6.36 (s, H-8), 7.35 (br s, H-2`), 7.22 (d, *J*= 8.4 Hz, H-5`), 7.36 (br d, *J*= 9.6 Hz, H-6`), 4.8 (H-1``, masked), 3.3-3.9 (m, H-2``,3``,4``,5``,6``). APT (CD<sub>3</sub>OD, 100 MHz): 164.8 (C-2), 103.7 (C-3), 182.5 (C-4), 161.8 (C-5), 98.8 (C-6), 164.1 (C-7), 93.7 (C-8), 158.0 (C-9), 104.1 (C-10), 125.8 (C-1`), 113.5 (C-2`), 148.6 (C-3`), 147.2 (C-4`), 116.5 (C-5`), 118.4 (C-6`), 101.8 (C-1``), 73.4 (C-2``), 76.1 (C-3``), 69.9 (C-4``), 77.1 (C-5``), 60.1 (C-6`).

**Compound 18** (3,5-dicaffeoylquinic acid (isochlorogenic acid)) was obtained as yellow powder. <sup>1</sup>H NMR (CD<sub>3</sub>OD, 400 MHz): 2.31 (m, H-2eq), 2.08-2.15 (m, H-2ax, 6eq, 6ax), 5.41 (m, H-3), 3.95 (dd, *J*= 9.36, 3.4, H-4), 5.53 (m, H-5), 6.79 (s, H-2`), 6.81 (s, H-2``), 7.09 (d, *J*= 7.8 Hz, H-5`, 5``), 6.99 (dd, *J*= 7.5, 2.2 Hz, H-6`, 6``),7.60 (d, *J*=15.9 Hz, H-7`), 7.63 (d, *J*= 15.9 Hz, H-7``), 6.32 (d, *J*= 15.9 Hz, H-8`), 6.42 (d, *J*= 15.9 Hz, H-8``). APT (CD<sub>3</sub>OD, 100 MHz): 74.6 (C-1), 35.9 (C-2), 72.7 (C-3), 71.3 (C-4), 70.9 (C-5), 38.9 (C-6), 170.0 (C-7), 126.6 (C-1`), 126.4 (C-1``), 113.6 (C-2`), 113.7 (C-2``), 145.4 (C-3`, 3``), 148.1 (C-4`), 148.0 (C-4``), 115.1 (C-5`), 115.0 (C-5``), 121.6 (C-6`), 121.5 (C-6``), 145.5 (C-7`), 145.4 (C-7``), 114.6 (C-8`), 114.1 (C-8``), 167.4 (C-9`), 167.9 (C-9``).

End of Supplementary material file