Supporting Information

Mesoporous K-doped NiCo₂O₄ derived from Prussian blue analog: High-yielding synthesis and assessment as oxygen evolution reaction catalyst

Nam Woon Kim,^a Hyunung Yu^{b*} and Jihun Oh^{c,d*}

^aDepartment of Nature-Inspired Nano Convergence Systems, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea ^bSurface Analysis Team, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea ^cDepartment of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea ^dKAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST, Daejeon 34141, Republic of Korea

*Corresponding authors. Emails: peacewithu@kriss.re.kr (H. Y.), jihun.oh@kaist.ac.kr (J. O.)

Figure S1. Fast Fourier transform patterns of (a) NiCo₂O₄ (white rectangle in Fig. 1b) and (b) KNO₃ (red rectangle in Fig. 1b).

Figure S2. Weighing the HK-NCO catalyst powder produced by hydrothermal synthesis.

Figure S3. SEM images of catalysts prepared (a) hydrothermally (KNO_3 + high-concentration K-doped NiCo₂O₄) and (b) non-hydrothermally (KNO_3 + low-concentration K-doped NiCo₂O₄).

Figure S4. XRD pattern of hydrothermally synthesized K-Ni-Co-PBA. Inset shows an expansion of the region of interest, confirming the absence of crystalline KNO₃.

Figure S5. (a) C 1s and (b) N 1s spectra of the synthesized catalysts (calibrated using the C 1s peak of adventitious carbon at 284.4 eV) (c) area calculation of elements derived from KNO₃.

Figure S6. CV curves of the prepared catalysts recorded at a scan rate of 1 mV s^{-1} to extract overpotentials at 10 mA cm⁻² and Tafel slopes.

Figure S7. Nyquist plot fitting results for (a) HK-NCO and (b) LK-NCO.

Figure S8. ECSA-normalized LSV polarization curves of the prepared catalysts recorded at a scan rate of 1 mV s^{-1} .

Table S1. Area of peaks corresponding to different chemical states in the X-rayphotoelectron spectra of the synthesized catalysts.

Catalyst	+	+	+		01	02	03				Ν
HK-NCO	15003.5	14218.2	11226.4	33370.5	23319.6	18842.2	24618.5	2713.2	2255.2	438.6	1348.1
LK-NCO	37949.5	26733.4	30128.4	79380.8	47448.7	24842.6	9111.2	3976.4	1663.3	642.8	1975.7

Catalyst	Substrate	η (mV) at 10 mA cm ⁻²	Tafel slope (mV dec ⁻¹)	Electrolyte	Ref
K-doped NiCo ₂ O ₄ (HK-NCO)	Ni foam	292 (reverse current)	49.9	1 М КОН	This work
Mesoporous NiCo ₂ O ₄	KIT-6 (mesoporous silica molecular sieve)	350	43	1 М КОН	1
P-doped NiCo ₂ O ₄ Nanowire	Ni foam	300	120	1 М КОН	2
Ir-doped (10 at%) NiCo ₂ O ₄ Nanostructure	Glassy carbon electrode	303	78	1 M KOH	3
MOF-derived NiCo ₂ O ₄ /NiO-rGO	Glassy carbon electrode	340	66	1 M KOH	4
NiMn LDH nanosheets/NiCo ₂ O ₄ nanowires	Ni foam	310	99	1 М КОН	5
NiCo ₂ O ₄ 3-D nanoflowers	Graphene nanosheets	383	137	1 М КОН	6
3-D core–shell structured NiCo ₂ O ₄ @CoS	Ni foam	290	92	1 M KOH	7
Hierarchical NiCo ₂ O ₄ nanosheet-CNTs	Ni foam	390	68.1	1 M KOH	8
Co ₃ O ₄ / NiCo ₂ O ₄	Ni foam	320	84	0.1 M KOH	9
Hierarchical NiCo ₂ S ₄ nanosheets/rGO	Glassy carbon electrode	366	65	1 М КОН	10
Ni _{0.75} Cu _{0.25} Co ₂ O ₄	Graphite felt	509	119	1 M KOH	11

 Table S2. Comparative overpotentials and Tafel slope values of electrocatalysts in this

 work and other literature.

MOF (metal organic frameworks), 3-D (Three-dimensional), LDH (layered double hydroxide), CNT (carbon nanotubes), rGO (reduced graphene oxide)

References

- C. Broicher, F. Zeng, J. Artz, H. Hartmann, A. Besmehn, S. Palkovits and R. Palkovits, *ChemCatChem*, 2019, **11**, 412. 1
- 2 W. Chu, Z. Shi, Y. Hou, D. Ma, X. Bai, Y. Gao and N. Yang, ACS Appl. Mater. Interfaces, 2020, 12, 2763.
- 3 H.-J. Lee, D.-H. Park, W.-J. Lee, S.-B. Han, M.-H. Kim, J.-H. Byeon and K.-W. Park, Appl. Catal. A Gen., 2021, **626**, 118377.
- Y. Wang, Z. Zhang, X. Liu, F. Ding, P. Zou, X. Wang, Q. Zhao and H. Rao, ACS Sustain. Chem. Eng., 2018, 6, 12511.
 L. Yang, L. Chen, D. Yang, X. Yu, H. Xue and L. Feng, J. Power Sources, 2018, 392, 23.
 Z. Li, B. Li, J. Chen, Q. Pang and P. Shen, Int. J. Hydrogen Energy, 2019, 44, 16120.

- 7 S. Adhikari, Y. Kwon and D. H. Kim, *Chem. Eng. J.*, 2020, **402**, 126192.
 8 H. Cheng, Y. Z. Su, P. Y. Kuang, G. F. Chen and Z. Q. Liu, *J. Mater. Chem. A*, 2015, **3**, 19314.
 9 M. Yang, W. Lu, R. Jin, X. C. Liu, S. Song and Y. Xing, *ACS Sustain. Chem. Eng.*, 2019, **7**, 12214.
 10 C. Shuai, Z. Mo, X. Niu, X. Yang, G. Liu, J. Wang, N. Liu and R. Guo, *J. Mater. Sci.*, 2020, **55**, 1627.
 11 H. Park, B. H. Park, J. Choi, S. Kim, T. Kim, Y. S. Youn, N. Son, J. H. Kim and M. Kang, *Nanomaterials*, 2020, **10**. 2020, **10**, 1.