## Impacts of Vanadium doping on the activity of phosphomolybdic acid catalysts in oxidation reactions of geraniol with hydrogen peroxide

Márcio José da Silva<sup>1\*,</sup> Jonh Alexander Vergara Torres<sup>1</sup>, and Castelo Bandane Vilanculo<sup>2\*</sup>

<sup>1</sup>Chemistry Department, Federal University of Viçosa, Viçosa, Minas Gerais, Brasil. zipcode: 36590-000

<sup>2</sup>Chemistry Department, Pedagogic University of Mozambique, FCNM, Campus de Lhanguene, Av. de Moçambique, km 1, Maputo, C.P.: 4040, Fax: (+258)21401082.

## Supplemental material

List of Figures

**Figure 1SM**. Isotherms of adsorption and desorption of  $N_2$  and volume and diameters porous (inset) of a pure phosphomolybdic acid catalyst and after the Vanadium doping.

**Figure 2SM.** Scanning electronic microscopy images of undoped and Vanadium-doped phosphomolybdic acids.

Figure 3SM. EDS spectra of undoped and Vanadium-doped phosphomolybdate acids.

Figure 4SM. Typical chromatogram of oxidation reaction with hydrogen peroxide

Figure 5SM1: Fragmentogram of the geraniol epoxide

Figure 6SM1: Fragmentogram of the geraniol diepoxide

Figure 7SM1: Fragmentogram of the nerol epoxide

List of Tables

**Table 1SM.** Porosimetry characteristics of pure and Vanadium doped-Sodiumphosphomolybdate salts<sup>a</sup>

 Table 2SM. Hydration water number per mol of catalyst determined through thermal analysis.



Figure 1SM Isotherms of adsorption and desorption of  $N_2$  and volume and diameters porous (inset) of a pure phosphomolybdic acid catalyst and after the Vanadium doping.



Figure 2SM. Scanning electronic microscopy images of undoped and Vanadium-doped

phosphomolybdic acids.





Figure 4SM. Typical chromatogram of oxidation reaction with hydrogen peroxide



Figure 5SM. Fragmentogram of the geraniol epoxide



Figure 6SM1: Fragmentogram of the geraniol diepoxide



Figure 7SM1: Fragmentogram of the nerol epoxide

| Catalyst                                         | $S_{BET}(m^2/g)$ | $V_{DFT}$ (cm <sup>3</sup> /g) | D (Á) |
|--------------------------------------------------|------------------|--------------------------------|-------|
| H <sub>3</sub> PMo <sub>12</sub> O <sub>40</sub> | 1.4              | 1.7 x 10 <sup>-3</sup>         | 37.9  |
| $H_4PMo_{11}VO_{40}$                             | 2.7              | 8.2 x10 <sup>-3</sup>          | 29.0  |
| $H_5 PMo_{10}V_2O_{40}$                          | 2.0              | 7.2 x 10 <sup>-3</sup>         | 27.7  |
| $H_6PMo_9V_3O_{40}$                              | 1.9              | 4.5 x 10 <sup>-3</sup>         | 27.7  |

 Table 1SM. Porosimetry characteristics of pure and Vanadium doped-Sodium

 phosphomolybdate salts<sup>a</sup>

 $\overline{{}^{a}S_{BET}}$  = surface area;  $V_{DFT}$  = cumulative pore volume; D = pore diameter

**Table 2SM.** Hydration water number per mol of catalyst determined through thermal analysis.

| Catalyst               | Total hydration water (573 K) |
|------------------------|-------------------------------|
| $H_3PMo_{12}O_{40}$    | 6                             |
| $H_4PMo_{11}VO_{40}$   | 8                             |
| $H_5PMo_{10}V_2O_{40}$ | 5                             |
| $H_6PMo_9V_3O_{40}$    | 6                             |

| Catalyst                | Rate constant <sup>b</sup> | TON  |
|-------------------------|----------------------------|------|
| Catalyst                | mmol/s                     | 1010 |
| $H_3PMo_{12}O_{40}$     | 3.8 x 10 <sup>-2</sup>     | 143  |
| $H_4PMo_{11}VO_{40}$    | 3.2 x 10 <sup>-2</sup>     | 143  |
| $H_5 PMo_{10}V_2O_{40}$ | 2.7 x 10 <sup>-2</sup>     | 119  |
| $H_6PMo_9V_3O_{40}$     | 1.5 x 10 <sup>-2</sup>     | 104  |

Table 5SM. Effect of the catalyst on the constant rate and TON of geraniol oxidation reactions with  $H_2O_2^a$ 

<sup>a</sup>Reaction conditions: geraniol (2.75 mmol),  $H_2O_2$  (2.75 mmol), toluene (internal standard), temperature (333 K), CH<sub>3</sub>CN (10 mL).

<sup>b</sup>Rate constant: measured after 1 h reaction; <sup>c</sup>TON: measured after 8 h reaction

**Table 6SM.** Effect of  $H_4PMo_{11}VO_{40}$  catalyst load on the constant rate and TON of geraniol oxidation reactions with  $H_2O_2^a$ 

| Load  | Rate constant <sup>b</sup> | TON  |  |
|-------|----------------------------|------|--|
| Mol % | mmol/s x 10 <sup>-4</sup>  | 101  |  |
| 0.66  | 6.88                       | 157  |  |
| 0.33  | 5.19                       | 267  |  |
| 0.16  | 4.58                       | 466  |  |
| 0.08  | 4.42                       | 935  |  |
| 0.04  | 4.05                       | 1738 |  |

<sup>a</sup>Reaction conditions: geraniol (2.75 mmol),  $H_2O_2$  (2.75 mmol), toluene (internal standard), temperature (333 K), CH<sub>3</sub>CN (10 mL).

<sup>b</sup>Rate constant: measured after 1 h reaction; <sup>c</sup>TON: measured after 8 h reaction