1	Supporting information
2	Development of bacterial resistance induced by low concentration of two-
3	dimensional black phosphorus via mutagenesis
4	Huixiang Wang ^{a,b} , Fang Fang ^{a,b} , Chengxun Deng ^{b,c} , Chengzhu Zhu ^{a,d} , Zhimin Yu ^{b,c} ,
5	Xiaowei Liu ^{b,c} *
6	^a School of Resources and Environmental Engineering, Hefei University of Technology,
7	Hefei 230009, China
8	^b International (Sino-German) Joint Research Center for Biomass of Anhui Province,
9	Hefei, 230601, China
10	° School of Biology, Food, and Environment, Hefei University, Hefei 230601, China
11	^d Key Laboratory of Nanominerals and Pollution Control of Higher Education
12	Institutes, Hefei University of Technology, Hefei 230009, China
13	
14	
15	
16	* Corresponding author.
17	E-mail address: <u>liuxw@hfuu.edu.cn</u> (X.W. Liu)
18	Full postal address: School of Biology, Food, and Environment, Hefei University, No.
19	99 Jinxiu Road, Hefei City 230601, China
20	Tel: +86-551-62158527

21	Supplementary methods
22	1. Cell morphology and ultrastructure observation
23	2. Lactate dehydrogenase (LDH) assay
24	Table and figure captions
25	Fig. S1. Effect of different concentrations of 2D-BP nano-material dispersion on the
26	growth inhibition rate of sensitive <i>E. coli</i> .
27	
28	Fig. S2. Sample volcano plot for comparing resistant bacteria with sensitive bacteria of
29	DEGs ($ FC >1$, P<0.05). Log ₂ FC represents the logarithm base 2 of multiples of
30	expression differences.
31	
32	Table S1. Three genetically changed genes in BP-resistant bacteria.
33	
34	Table S2. Sequencing and assembly statistics for the transcriptomic data.
35	
36	Table S3. The significant up-regulated genes in resistant bacteria compared with
37	sensitive bacteria (P<0.05).
38	
39	Table S4. The enriched up-regulated genes in resistant bacteria compared with
40	sensitive bacteria (<i>P</i> <0.05).

41 **1.** Cell morphology and ultrastructure observation

The BP-sensitive and BP-resistant bacterial broth was exposed to 500 mg/L 2D-42 BP nanosheets dispersion for 24 h, and centrifuged at 1000 rpm for 10 min to remove 43 most of the 2D BP nanosheets in the mixed solution. The retained bacteria were 44 45 washed two times with PBS buffer and immediately fixed in 2.5% glutaraldehyde for 46 12 h at room temperature. After fixation, the specimens were dehydrated by a graded series of ethanol solutions (50, 70, 90 and 100%) two times each for 10 min, 47 respectively. Subsequently, the dehydrated cells were immersed in 50% tert-butanol 48 and 100% tert-butanol for 20 min, respectively. They were pre-frozen at -20 $^\circ C$ for 24 49 50 hand then freeze-dried in vacuum. Finally, the bacteria were sputter-coated with 51 gold (20 s, 30 mA) and the morphology of bacterial cell was observed by scanning 52 electron microscope (SEM; SU8020; Hitachi, Japan).

The bacterial cells were fixed with 2.5% glutaraldehyde solution for 12 h (the 53 54 fixed solution was filled with the centrifuge tube to make the bacteria precipitate 55 completely immersed), then the fixed solution was poured out and the samples were rinsed with PBS buffer for three times, 15 min each time. The sample was fixed with 56 1% osmium acid solution for 1~2 h. The osmium acid waste solution was carefully 57 removed, and the sample was rinsed with PBS buffer three times, 15 min each time. 58 59 The samples were dehydrated with ethanol solution of gradient concentration (including 30%, 50%, 70%, 80%, 90% and 95%) for 15 min at each concentration, and 60 then treated with 100% ethanol for 20 min, the treatment was transferred to pure 61 acetone for 20 min. The sample was treated with a mixture of embedding agent and 62 63 acetone (V/V=1/1) for 1 h. The sample was treated with a mixture of embedding agent and acetone (V/V=3/1) for 3 h. The samples were treated overnight with pure embedding agent. The embedded sample is obtained by embedding the permeated sample and heating it overnight at 70 $^{\circ}$ C. The samples were selected in a Leica EM UC7 ultrafine slicer, and slices at 70~90 nm were obtained. The slices were stained with lead citrate solution and 50% ethanol saturated solution of uranium dioxide acetate for 5~10 min respectively. After drying, the slices were observed under a transmission electron microscope (H-7650, Hitachi, Japan).

71 2. Lactate dehydrogenase (LDH) assay

Experimental Settings: No bacterial cell group (blank group), without BP treatment of bacterial cells (control group), without BP treatment used for subsequent cracking of bacterial cells group (maximum enzyme activity), black phosphate treatment of bacterial cells group (treatment group), 1 h before reach testing point in time, to add the "largest enzyme activity of samples" group LDH releasing reagent, add 10% of the original medium, mix well and continue to culture. After the culture, the experimental samples were centrifuged at 10000 × g for 10 min, and 120 μ L supernatant of each component was added into 96-well plate and mixed with 60 μ l LDH detection solution. The mixed solution was incubated at room temperature (25 °C) for 30 min in dark. The LDH release was quantified by dual wavelength absorbance measurements at 490 nm and 600 nm.

84 Fig. S1 Effect of different concentrations of 2D-BP nano-material dispersion on the

85 growth inhibition rate of sensitive *E. coli K12*.

83

Fig. S2 Sample volcano plot for comparing resistant bacteria with sensitive bacteria of DEGs (|FC|>1, P<0.05). Log₂FC represents the logarithm base 2 of fold change of expression differences.

Site	Ref→Alt	Types	Gene	Amino acid mutants	Function	
803662	C→A	SNP	dmdA	Arg → Gln	dimethylmalate dehydratase large subunit	
1905761	G→A	SNP	mntP	Let →lle	putative manganese efflux pump <i>MntP</i>	
2339173	G→A	SNP	gyrA	Gly →Asp	DNA gyrase subunit A	

91 Three genetically changed genes in BP-resistant bacteria.

92

95 Sequencing and assembly statistics for the transcriptomic data.

Sample	Raw	Clean Reads	Tatal	Uniquely
	Reads		mapped ^a	mapped ^b
BP-sensitive	24797288	24463394	23919004	23012286
bacteria-1			(97.77%)	(94.07%)
BP-sensitive	24890614	24549818	24222917	23154051
bacteria-2			(98.67%)	(94.31%)
BP-sensitive	23004758	22642684	22281213	21139211
bacteria-3			(98.4%)	(93.36%)
BP-resistant	22471226	22167898	21926241	20740174
bacteria-1			(98.91%)	(93.56%)
BP-resistant	22089754	21757476	21344681	20426838
bacteria-2			(98.1%)	(93.88%)
BP-resistant	25137732	24625256	24323742	22032418
bacteria-3			(98.78%)	(89.47%)

96 a Total mapped is the number of clean reads that mapped to the reference genome.

97 b Uniquely mapped is the number of clean reads that mapped to the reference

98 genome only at one site.

- 100 The significant up-regulated genes in resistant bacteria compared with sensitive
- 101 bacteria (*p*<0.05).

Class	Gene name	Gene description L	.og ₂ FC
Metabolism	tnaB	tryptophan: H (+) symporter TnaB	3.47
	tnaA	tryptophanase	3.23
	tdcD	propionate kinase	3.06
	glpC	anaerobic glycerol-3-phosphate dehydrogenase	3.06
		subunit C	
	tnaC	tnaAB operon leader peptide	2.81
	waaU	putative ADP-heptose:LPS heptosyltransferase 4	2.58
	glpB	anaerobic glycerol-3-phosphate dehydrogenase	2.38
		subunit B	
	tdcC	threonine/serine:H(+) symporter	2.26
	fau	putative 5-formyltetrahydrofolate cyclo-ligase	1.99
	tdcA	DNA-binding transcriptional activator TdcA	1.89
	murP	N-acetylmuramic acid-specific PTS enzyme IICB	1.62
		component/anhydro-N-acetylmuramic acid	
		transporter	
	tdcE	2-ketobutyrate formate-lyase/pyruvate formate-	1.55
		lyase 4	
	tdcB	catabolic threonine dehydratase	3.01
Transcriptio	rpsQ	30S ribosomal subunit protein S17	1.86
n and	rpoC	RNA polymerase subunit beta'	1.62
Translation	rpmJ	50S ribosomal subunit protein L36	1.45
	rpmF	50S ribosomal subunit protein L32	1.44
	rpmD	50S ribosomal subunit protein L30	1.42
	rplQ	50S ribosomal subunit protein L17	1.31

	rpmC	50S ribosomal subunit protein L29	1.16
	rpoA	RNA polymerase subunit alpha	1.05
Cellular	isrC	-	4.71
Processes	flu	CP4-44 prophage%3B self recognizing antigen 43	4.00
		(Ag43) autotransporter	
	mglC	D-galactose/methyl-galactoside ABC transporter	2.42
		membrane subunit	
	fliL	flagellar protein FliL	2.07
	flgD	flagellar biosynthesis%2C initiation of hook	2.01
		assembly	
	gfcC	capsule biosynthesis GfcC family protein	1.99
	mglA	D-galactose/methyl-galactoside ABC transporter	1.92
		ATP binding subunit	
	aroF	3-deoxy-7-phosphoheptulonate synthase%2C Tyr-	1.84
		sensitive	
	gfcB	lipoprotein GfcB	1.79
	mglB	D-galactose/methyl-galactoside ABC transporter	1.69
		periplasmic binding protein	
	fliS	flagellar biosynthesis protein FliS	1.30
	gfcD	putative lipoprotein GfcD	1.28
	aer	aerotaxis sensor receptor%2C flavoprotein	1.11

Log₂FC represents the logarithm base 2 of fold change of expression differences.

105 The enriched up-regulated genes in resistant bacteria compared with sensitive

106 bacteria (*p*<0.05).

Gene KEGG Pathway		Description	FC
	Name	Description	
Bacterial	cheA	chemotaxis protein CheA	1.28
chemotaxis	mglB	D-galactose/methyl-galactoside ABC	3.23
		transporter periplasmic binding protein	
	motB	motility protein B	1.11
	cheZ	chemotaxis protein CheZ	1.09
	cheY	chemotaxis protein CheY	1.26
	cheR	chemotaxis protein methyltransferase	2.11
	tap	methyl-accepting chemotaxis protein Tap	1.61
	rbsB	ribose ABC transporter periplasmic binding	1.52
		protein	
	fliM	flagellar motor switch protein FliM	1.96
	tar	methyl-accepting chemotaxis protein Tar	1.08
	fliN	flagellar motor switch protein FliN	1.25
	trg	methyl-accepting chemotaxis protein Trg	1.35
	dppA	dipeptide ABC transporter periplasmic binding	1.31
		protein	
	lafU	flagellar system protein%2C promoterless	1.29
		fragment	
	motA	motility protein A	1.35
	fliG	flagellar motor switch protein FliG	1.36
Flagellar	motB	motility protein B	1.11
assembly	fliM	flagellar motor switch protein FliM	1.96
	flgE	flagellar hook protein FlgE	1.72
	fliN	flagellar motor switch protein FliN	1.25
	lafU	flagellar system protein%2C promoterless	1.29

fragment

	flhD	DNA-binding transcriptional dual regulator FlhD	1.15
	flhC	DNA-binding transcriptional dual regulator FlhC	1.68
	motA	motility protein A	1.35
	fliG	flagellar motor switch protein FliG	1.36
	flhB	flagellar biosynthesis protein FlhB	1.52
Oxidative	frdC	fumarate reductase membrane protein FrdC	1.47
phosphorylation	frdA	fumarate reductase flavoprotein subunit	1.23
	frdB	fumarate reductase iron-sulfur protein	1.61
	nuoM	NADH:quinone oxidoreductase subunit M	1.57
	nuoL	NADH:quinone oxidoreductase subunit L	1.29
	пиоК	NADH:quinone oxidoreductase subunit K	1.88
	atpH	ATP synthase F1 complex subunit delta	2.28
	atpF	ATP synthase Fo complex subunit b	2.19
	atpE	ATP synthase Fo complex subunit c	3.21
	atpD	ATP synthase F1 complex subunit beta	3.59
	atpG	ATP synthase F1 complex subunit gamma	3.34
	atpB	ATP synthase Fo complex subunit a	1.69
	sdhB	succinate:quinone oxidoreductase%2C iron-	1.39
		sulfur cluster binding protein	
	sdhD	succinate:quinone oxidoreductase%2C	1.33
		membrane protein SdhD	
	sdhA	succinate:quinone oxidoreductase%2C FAD	1.13
		binding protein	
Pentose and	sgbE	L-ribulose-5-phosphate 4-epimerase SgbE	1.03
glucuronate	sgbU	putative L-xylulose 5-phosphate 3-epimerase	1.75
interconversions	sgbH	3-keto-L-gulonate-6-phosphate decarboxylase	1.42
		SgbH	
	lyxK	L-xylulose kinase	1.22

	araA	L-arabinose isomerase			
	yagF	CP4-6 prophage%3B D-xylonate dehydratase	1.29		
	yagE	CP4-6 prophage%3B putative 2-keto-3-	1.47		
		deoxygluconate aldolase			
	araD	L-ribulose-5-phosphate 4-epimerase AraD	1.68		
	rhaB	rhamnulokinase	3.02		
	kdul	5-dehydro-4-deoxy-D-glucuronate isomerase	1.25		
	kduD	putative 2-keto-3-deoxy-D-gluconate	1.03		
		dehydrogenase			
	yiaK	2%2C3-diketo-L-gulonate reductase	1.59		
	rhaD	rhamnulose-1-phosphate aldolase			
	araB	ribulokinase			
	ulaE	L-ribulose-5-phosphate 3-epimerase UlaE			
	ulaD	3-keto-L-gulonate-6-phosphate decarboxylase			
		UlaD			
	ulaF	L-ribulose-5-phosphate 4-epimerase UlaF	1.20		
Thiamine	thiC	phosphomethylpyrimidine synthase			
metabolism	rsgA	ribosome small subunit-dependent GTPase A			
	thiL	thiamine monophosphate kinase	1.01		
	thiD	bifunctional hydroxymethylpyrimidine	1.33		
		kinase/phosphomethylpyrimidine kinase			
	thiM	hydroxyethylthiazole kinase	1.23		

Fold changes (FC) of the expression of genes between 2D-BP resistant bacteria and
sensitive bacteria *E. coli K12*.