Electronic Supplementary Information

Impact of sp² carbon material species on Pt nanoparticle-based electrocatalysts produced by one-pot pyrolysis methods with ionic liquids

Yu Yao,^{ab} Qingning Xiao,^a Masafumi Kawaguchi,^a Tetsuya Tsuda,^{*ac} Hirohisa Yamada^b and Susumu Kuwabata^{*ad}

- ^a Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- ^b Department of Chemical Engineering, National Institute of Technology, Nara College, 22 Yata-cho, Yamatokoriyama, Nara 639-1080, Japan
- ^c Department of Materials Science, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba 263-8522, Japan

^d Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan

*Corresponding authors: Tetsuya Tsuda and Susumu Kuwabata E-mail addresses: ttsuda@chiba-u.jp and kuwabata@chem.eng.osaka-u.ac.jp

Fig. S1 Chemical structural formulae of ionic liquids used in this study.

Fig. S2 Nitrogen adsorption-desorption isotherms of (a) GNPs-3 and (b) MWCNTs. The BET specific surface areas of GNPs-3 and MWCNTs were estimated to be 1243 and 210 m² g⁻¹, respectively.

Fig. S3 Transmission electron microscopy (TEM) images of Pt nanoparticles prepared under the same experimental conditions as given in Table 1, but without sp² carbon materials. The ILs employed were (a) $[C_4mim][Tf_2N]$ and (b) $[N_{1,1,1,3}][Tf_2N]$.

Fig. S4 Raman spectra of specimens 1–6. The sp² materials used in the IL one-pot pyrolysis method were (a) GNPs-3, (b) GNPs-20, and (c) MWCNTs. The ILs employed for this process were (blue) $[C_4mim][Tf_2N]$ and (red) $[N_{1,1,1,3}][Tf_2N]$. (black) Original sp² carbon material.

Fig. S5 Linear sweep voltammograms recorded at glassy carbon stationary electrodes with specimens (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 6, and (g) Pt-C in an O₂-saturated 0.1 M HClO₄ aqueous solution (—) before and (—) after the durability test. The rotating speeds were 1600 rpm. The scan rate was 10 mV s⁻¹.

Fig. S6 Koutecký-Levich plots (a) before and (b) after durability tests. The potential for constructing the plots was 0.85 V. (c) Variation in surface retention rate estimated from the Koutecký-Levich plots as a function of cycle number. The specimens are (\blacksquare) 1, (\blacksquare) 2, (\blacksquare) 3, (\circ) 4, (\circ) 5, and (\circ) 6.