Electronic Supplementary Information

Direct synthesis of ultrathin FER zeolite nanosheets via a dual-template

approach

Yuekun Li,^{a,b} Duozheng Ma,^{a,b} Wenhua Fu,^b Chuang Liu,^b Yu Wang,^b Zhendong Wang,^{b,*}

and Weimin Yang^{a,b,*}

^a School of Chemical Engineering, East China University of Science and Technology,

Shanghai, 200237, PR China, <u>yangwm.sshy@sinopec.com</u> (W. Yang)

^b State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec

Shanghai Research Institute of Petrochemical Technology, Shanghai, 201208, PR China,

wangzd.sshy@sinopec.com (Z. Wang)

Supplementary Figure Captions

Fig. S1 XRD patterns of C-FER (a) and SCM-37 with different SAR of 15 (b), 20 (c), 25 (d).
Fig. S2 XRD patterns of samples crystallized using OTMAC (a), 4-DMAP (b), and both OTMAC and 4-DMAP (c).
Fig. S3 XRD patterns of samples crystallized at different temperatures.

Fig. S4 NH_3 -TPD curves of the H-C-FER (a) and H-SCM-37 (b).

Fig. S5 Py-IR spectra of H-C-FER (A) and H-SCM-37 (B).

Fig. S6 ²⁷Al MAS NMR spectra of the as-synthesized (A) and calcined (B) samples: C-FER (a) and SCM-37 (b).

Table S1 Acid properties of SCM-37 and C-FER determined by NH₃-TPD and Py-IR.

Table S2 TiPB conversion and product distributions over C-FER and SCM-37 at different

reaction temperatures.

Fig. S1 XRD patterns of C-FER (a) and SCM-37 with different SAR of 15 (b), 20 (c), 25 (d).

Fig. S2 XRD patterns of samples crystallized using OTMAC (a), 4-DMAP (b) and both OTMAC and 4-DMAP (c).

Fig. S3 XRD patterns of samples crystallized at different temperatures.

Fig. S4 NH_3 -TPD curves of H-C-FER (a) and H-SCM-37 (b).

Fig. S6²⁷Al MAS NMR spectra of the as-synthesized (A) and calcined (B) samples: C-FER (a) and SCM-37 (b).

Table S1 Acid properties of SCM-37 and C-FER determined by NH ₃ -TPD and Py-IR.										
Sample	Total acid concentration ^a	B acid sites	<mark>b (µmol/g)</mark>	L acid sites ^b (µmol/g)						
	<mark>(µmol/g)</mark>	<mark>150 °C</mark>	<mark>350 °C</mark>	<mark>150 °C</mark>	<mark>350 °C</mark>					
C-FER	<mark>1349</mark>	<mark>195</mark>	<mark>144</mark>	<mark>24</mark>	<mark>18</mark>					
SCM-37	<mark>955</mark>	<mark>147</mark>	<mark>88</mark>	<mark>35</mark>	<mark>22</mark>					

^a Measured by NH₃-TPD. ^b Measured by Py-IR.

Table S2TiPBconversionandproductdistributionsoverC-FERandSCM-37atdifferentreaction temperatures.

	TiPB conversion (%)		Product selectivity (%)					
			DiPBs		iPB		Bz	
Temp. (°C)	C-FER	SCM-37	C-FER	SCM-37	C-FER	SCM-37	C-FER	SCM-37
<mark>250</mark>	<mark>27.4</mark>	<mark>74.0</mark>	<mark>84.1</mark>	<mark>76.1</mark>	<mark>8.6</mark>	<mark>21.2</mark>	<mark>0.2</mark>	<mark>0.4</mark>
<mark>275</mark>	<mark>30.5</mark>	<mark>87.3</mark>	<mark>86.1</mark>	<mark>69.9</mark>	<mark>8.8</mark>	<mark>28.7</mark>	<mark>0.2</mark>	<mark>0.7</mark>
<mark>300</mark>	<mark>51.7</mark>	<mark>96.0</mark>	<mark>82.1</mark>	<mark>48.2</mark>	<mark>14.7</mark>	<mark>47.7</mark>	<mark>0.7</mark>	<mark>3.2</mark>
<mark>325</mark>	<mark>71.2</mark>	<mark>99.3</mark>	<mark>75.5</mark>	<mark>20.5</mark>	<mark>22.5</mark>	<mark>66.0</mark>	<mark>0.8</mark>	<mark>11.9</mark>
<mark>350</mark>	<mark>94.6</mark>	<mark>99.9</mark>	<mark>42.4</mark>	<mark>5.9</mark>	<mark>49.5</mark>	<mark>58.6</mark>	<mark>7.6</mark>	<mark>33.4</mark>