Supporting information

Redox behavior of potassium doped and transition metal co-doped $Ce_{0.75}Zr_{0.25}O_2$ for thermochemical H₂O/CO₂ splitting

Maria Portarapillo[†], Gianluca Landi[‡]*, Giuseppina Luciani[†]*, Claudio Imparato[†], Giuseppe Vitiello[†],[‡], Fabio A. Deorsola[§], Antonio Aronne[†], Almerinda Di Benedetto[†]

† Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Univ. of Naples Federico II, P.le Tecchio 80, 80125, Naples, Italy.

‡ Institute of Sciences and Technologies for Sustainable Energy and Mobility, CNR, P.le Tecchio 80, 80125, Naples, Italy.

LCSGI, Center for Colloids and Surface Science, 50019, Florence, Italy

8 Department of Applied Science and Technology, Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Turin, Italy

*corresponding author: gianluca.landi@stems.cnr.it & luciani@unina.it

Figure S1. Co-precipitation synthesis steps of the doped ceria materials.

Figure S2. Schematic of the TGA apparatus.

Figure S3. Schematic of the quartz reactor setup.

Table S1. XRD parameters evaluated from the (111) plane: (diffraction angle (2θ , °); cell parameter (a, nm); crystallite size (τ , nm) and specific surface area (SSA, m²/g) of used samples (treated up to

1350 °C).

Sample	20	a	τ	SSA
CeZr	28.39	0.544	23	3
Fe-CeZr	28.18	0.548	27	3
Mn-CeZr	28.21	0.548	23	3
Cu-CeZr	28.58	0.541	24	5
K-CeZr	28.68	0.539	24	4
K-Fe-CeZr	28.83	0.536	70	4
K-Cu-CeZr	28.70	0.539	57	5

Figure S4. XRD profiles of fresh and used K-Fe-CeZr.

Figure S5. Ce 3d high-resolution XPS spectra with curve-fitting of the fresh (left) and used (right)

catalysts.

Table	S2.	Content	t of	surface	labile	oxygen	(as	ratio	between	labile	oxygen	(O_{α})) and	bulk	oxyge	en

	Fresh	Used	Δ(Ce	Δ(Ce ³⁺ /Ce ⁴⁺)	
Sample	O_{α}/O_{β}	O_{α}/O_{β}	/Zr)		
CeZr	1.33	0.57	0.96	0.06	
Fe-CeZr	0.97	0.92	-0.53	0.49	
Mn-CeZr	0.92	1.42	-0.92	-0.15	
Cu-CeZr	1.04	1.10	-1.32	-0.31	
K-CeZr	0.85	0.58	-0.16	0.05	
K-Fe-CeZr	0.67	0.68	-1.76	0.03	
K-Cu-CeZr	0.85	1.04	-1.05	0.48	

 $(O_{\beta}))$ by XPS analysis.

Figure S6. TG profiles of a CO₂ splitting cycle of M'-M-CeZr samples. a) undoped and transition metals doped samples; b) undoped and potassium doped and co-doped samples.

Figure S7. DTG profiles of self-reduction step of the studied samples

Figure S8. TG profiles of a double CO2 splitting cycle on bare and K-doped ceria/zirconia samples.

Table S3. . Reduction degree after each step (x_{red} , %), oxidation yield (α , %), and reduction yield(β , %) during thermochemical cycles in TG.

		CeZr	Fe-CeZr	Mn-CeZr	Cu-CeZr	K-CeZr	K-Fe-CeZr	K-Cu-CeZr
	X _{red}	25.6	25.6	22.9	31.4	26.6	20.5	43.1
Ι	β	-	-	-	-	-	-	-
cycle	X _{red}	22	16.7	13.8	26.6	12.2	9.7	30.2
	α	13.8	35	39.9	15.4	54.1	52.7	29.9
	X _{red}	27.4	-	-	-	18.4	13.1	42.8
II	β	151.8	-	-	-	43.4	31.6	97.4
cycle	X _{red}	26.3	-	-	-	11.5	8.6	40.5
	α	19.8	-	-	-	110.9	131.8	18.3
	X _{red}	-	-	-	-	17.8	12.6	48.9
III	β	-	-	-	-	91.4	88	369.5
cycle	X _{red}	-	-	-	-	12	8.9	48.2
	α	-	-	-	-	92.1	91.9	8.6
	X _{red}	-	-	-	-	18.2	12.7	53.3
IV	β	-	-	-	-	106	103.9	699
cycle	X _{red}	-	-	-	-	13.4	9.1	55
	α	-	-	-	-	77.3	94.7	0
v	X _{red}	-	-	-	-	19.5	13.3	61.3
	β	-	-	-	-	127.1	116.8	0
cycle	X _{red}	-	-	-	-	14.9	10	60.9
	α	-	-	-	-	76.2	79.4	7.5

Figure S9. Reduction profiles of the studied samples for two reduction-oxidation cycles.

Figure S10. Oxidation profiles of the studied samples for two reduction-oxidation cycles.

Table S4. Reduction degree after each step (x_{red} , %), oxidation yield (α , %), and reduction yield (β ,

	Sample	CeZr	Fe-CeZr	Mn-CeZr	Cu-CeZr	K-CeZr	K-Fe-CeZr	K-Cu-CeZr
	X _{red}	36.5	63.1	66.7	60.5	44.6	49.9	78.9
I cycle	β	-	-	-	-	-	-	-
	X _{red}	18	10.6	7.5	17.1	19.9	-6.1	37.2
	α	50.9	83.1	88.8	71.8	55.5	112.2	52.8
	x _{red}	56.3	72.3	68	61.5	67.4	49.1	81
II cycle	β	206.4	117.6	102.1	102.2	191.6	98.5	105.2
	X _{red}	34.6	20	12.9	20.2	7.7	-4.8	32.6
	α	56.5	84.8	91.1	92.9	125.7	97.6	110.5

%) during TPR and	TPO cycling.
-------------------	--------------