Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Comparing the efficacy of various methods for sulfate radical generation for antibiotics degradation in synthetic wastewater: Degradation mechanism, kinetics study, and toxicity assessment

Ali Behnami^{1,2}, Ehsan Aghayani³, Khaled Zoroufchi Benis⁴, Mohammad Sattarei⁵, Mojtaba

Pourakbar^{1*}

- 1. Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran.
- 2. Department of Environmental Health Engineering, Iran University of Medical Sciences, Tehran, Iran.
- 3. Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran.
- 4. Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
- 5. Department of Biophysics, Faculty of Biological Sciences, Malayer University, Malayer, Iran.

*Correspondence to: Mojtaba Pourakbar, Email: <u>ppourakbar@yahoo.com</u>, Tel (+98) 04132726363

Table 1S. Identification of degradation intermediates of AMX by LC-MS (positive ion mode ESI mass spectra).

Intormodiatos	Doguadation	mouc ESI I	mass spectra).
Intermediates	Degradation	\mathbf{m}/\mathbf{z}	Corresponding intermediates of
	Time (min)		Dexamethasone
AMX	5	365.4	HO NH2 NH2 NHO NHO
A1	5	364	HO NO HO
A2	5	388.2	HO NH2 NH2 NH2 NAO
A3	5	384.2	HO OH NO HO
A4	5	349.3	HO BO
Δ5	5	340.3	HO S HO OH

A5

5 307 A6 ОН 285 10 A7 263 10 A8 5 259.1 A9 20 189.3 A10 5 165.2

A11-1

A11-2	5	166	HO NH ₂
A11-3	5	166	но
A12	10	143.2	NH ₂
A12-2	10	144	ОН
A13	20	139.3	ОН
A13-2	20	138	но

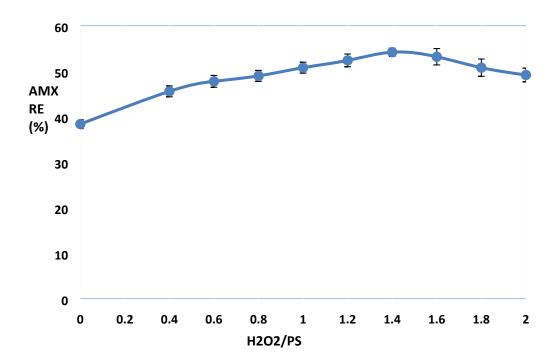
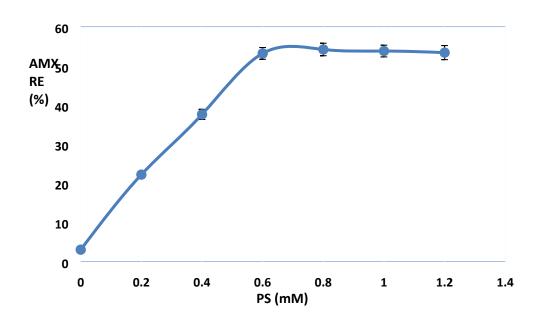
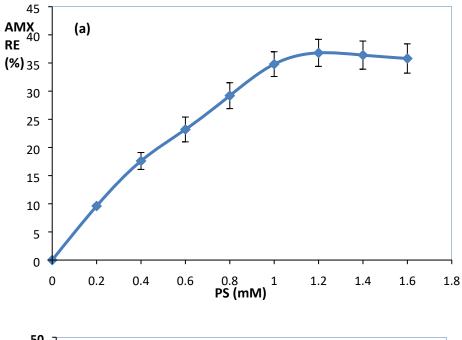
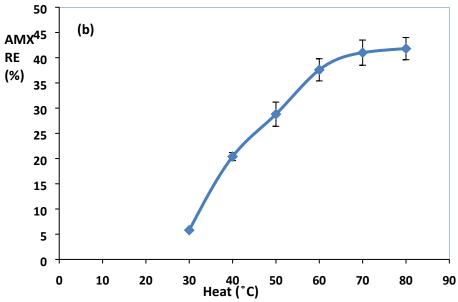





Fig. 1S: The effect of H_2O_2/PS ratio on AMX degradation (pH=7, AMX= 50 mg/L, time= 30 min)

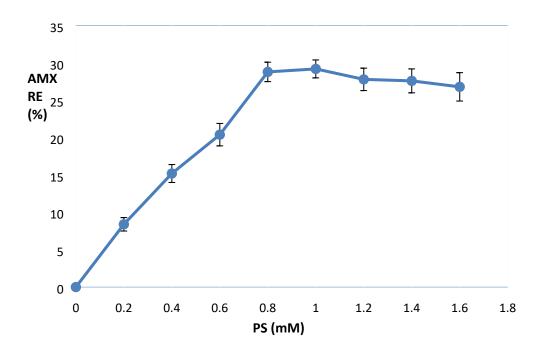


Fig 2S: The effect of persulfate concentration in UV/PS process (pH=3, AMX= 50 mg/L, time= 15 min)

Fig. 3S: The effect of PS (a) and heat (b) on PS activation (pH=5, AMX= 50 mg/L, time= 30 min)

Fig. 4S: The effect of PS concentration on the US/PS process (pH=5, AMX= 50 mg/L, time= 30 min, US= 30kHz)