Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

## Supplementary Information

## Co-catalysis of trace dissolved Fe(III) with biochar in hydrogen peroxide

## activation for enhanced oxidation of pollutants

Dongqing Feng <sup>a</sup>, Jianxin Shou <sup>b,\*</sup> Sen Guo <sup>a</sup>, Mengna Ya <sup>a</sup>, Jianfa Li <sup>a,\*</sup>, Huaping Dong <sup>a</sup>, Yimin Li <sup>a</sup>

<sup>a</sup> College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing Zhejiang, 312000, China

<sup>b</sup> College of Life Science, Shaoxing University, Shaoxing Zhejiang, 312000, China

\*Corresponding authors Email: jianxinshou@usx.edu.cn (Jianxin Shou); ljf@usx.edu.cn (Jianfa Li) Tel.: +86 575 8834 1524; Fax: +86 575 8834 1521 Address: 508 Huancheng West Road, Zhejiang Shaoxing, 312000, China

Number of pages (including this page): 11

| Sample                         | $LB^{[1]}$    | WB            |  |  |  |
|--------------------------------|---------------|---------------|--|--|--|
| $SA_{BET}$ (m <sup>2</sup> /g) | 6.66          | 409           |  |  |  |
| рН                             | $9.11\pm0.03$ | $8.03\pm0.06$ |  |  |  |
| Ash (%)                        | $23.4\pm0.1$  | $0.89\pm0.03$ |  |  |  |
| Elemental compositions (%)     |               |               |  |  |  |
| С                              | $66.0\pm0.3$  | $93.9\pm0.4$  |  |  |  |
| Н                              | $1.53\pm0.1$  | $1.46\pm0.1$  |  |  |  |
| Ο                              | $4.31\pm0.4$  | $3.83\pm0.2$  |  |  |  |
| Ν                              | $3.36\pm0.1$  | 0             |  |  |  |
|                                |               |               |  |  |  |

**Table S1.** The compositions and properties of two biochar samples

| Run | Biochar<br>dosage (g/L) | Iron species<br>dosage (mg/L) | H <sub>2</sub> O <sub>2</sub><br>dosage | pH <sub>0</sub> | Figure                                                                                  |
|-----|-------------------------|-------------------------------|-----------------------------------------|-----------------|-----------------------------------------------------------------------------------------|
| 1   | LB 3.0                  | /                             | /                                       | 3.0             | Fig. 1(a)                                                                               |
| 2   | LB 3.0                  | /                             | 5.0                                     | 3.0             | Fig. 1(a) (c) (d);<br>Fig. 2;<br>Fig. 3(a) (b);<br>Fig. 4                               |
| 3   | /                       | /                             | 5.0                                     | 3.0             | Fig. 1(a) (b) (c)                                                                       |
| 4   | /                       | Fe(III) 0.30                  | 5.0                                     | 3.0             | Fig. 1(a) (b) (c) (d);<br>Fig. 2;<br>Fig. 4;<br>Fig. 6(c)                               |
| 5   | LB 3.0                  | Fe(III) 0.30                  | 5.0                                     | 3.0             | Fig. 1(a) (c) (d);<br>Fig. 2;<br>Fig. 3(a) (b) (c);<br>Fig. 4;<br>Fig. 6(a) (b) (c) (d) |
| 6   | WB 3.0                  | /                             | /                                       | 3.0             | Fig. 1(b)                                                                               |
| 7   | WB 3.0                  | /                             | 5.0                                     | 3.0             | Fig. 1(b) (c) (d);<br>Fig. 2                                                            |
| 8   | WB 3.0                  | Fe(III) 0.30                  | 5.0                                     | 3.0             | Fig. 1(a) (c) (d);<br>Fig. 2;<br>Fig. 4                                                 |
| 9   | LB 3.0                  | Fe(III) 0.10                  | 5.0                                     | 3.0             | Fig. 3(a) (b)                                                                           |
| 10  | LB 3.0                  | Fe(III) 0.60                  | 5.0                                     | 3.0             | Fig. 3(a) (b)                                                                           |
| 11  | LB 3.0                  | Fe(III) 1.00                  | 5.0                                     | 3.0             | Fig. 3(a) (b)                                                                           |
| 12  | LB 3.0                  | Fe(II) 0.30                   | 5.0                                     | 3.0             | Fig. 3(c)                                                                               |

Table S2. The experimental conditions corresponding to the results shown in different figures

| 13 | /      | Fe(II) 0.30                        | 5.0 | 3.0 | Fig. 3(c) |
|----|--------|------------------------------------|-----|-----|-----------|
| 14 | WB 1.0 | /                                  | 5.0 | 3.0 | Fig. 3(d) |
| 15 | /      | Fe <sub>2</sub> O <sub>3</sub> 1.0 | 5.0 | 3.0 | Fig. 3(d) |
| 16 | WB 1.0 | Fe <sub>2</sub> O <sub>3</sub> 1.0 | 5.0 | 3.0 | Fig. 3(d) |
| 17 | /      | Fe <sub>3</sub> O <sub>4</sub> 1.0 | 5.0 | 3.0 | Fig. 3(d) |
| 18 | WB 1.0 | Fe <sub>3</sub> O <sub>4</sub> 1.0 | 5.0 | 3.0 | Fig. 3(d) |
| 19 | LB 3.0 | Fe(III) 0.30                       | 5.0 | 2.0 | Fig. 6(a) |
| 20 | LB 3.0 | Fe(III) 0.30                       | 5.0 | 2.5 | Fig. 6(a) |
| 21 | LB 3.0 | Fe(III) 0.30                       | 5.0 | 3.5 | Fig. 6(a) |
| 22 | LB 3.0 | Fe(III) 0.30                       | 5.0 | 4.0 | Fig. 6(a) |
| 23 | LB 3.0 | Fe(III) 0.30                       | /   | 3.0 | Fig. 6(b) |
| 24 | LB 3.0 | Fe(III) 0.30                       | 1.0 | 3.0 | Fig. 6(b) |
| 25 | LB 3.0 | Fe(III) 0.30                       | 3.0 | 3.0 | Fig. 6(b) |
| 26 | LB 3.0 | Fe(III) 0.30                       | 7.0 | 3.0 | Fig. 6(b) |
| 27 | LB 3.0 | Fe(III) 0.30                       | 9.0 | 3.0 | Fig. 6(b) |
| 28 | LB 1.0 | Fe(III) 0.30                       | 5.0 | 3.0 | Fig. 6(c) |
| 29 | LB 2.0 | Fe(III) 0.30                       | 5.0 | 3.0 | Fig. 6(c) |
| 30 | LB 4.0 | Fe(III) 0.30                       | 5.0 | 3.0 | Fig. 6(c) |
| 31 | LB 5.0 | Fe(III) 0.30                       | 5.0 | 3.0 | Fig. 6(c) |



**Fig. S1.** SEM-EDS information of (a) WB and (b) LB samples. The data were obtained in a scanning electron microscope (SEM) (JSM-6360LV, JEOL, Japan) equipped with an energy dispersive X-ray spectrometer (EDS) (X-act, Oxford, UK).



**Fig. S2**. Change of chloride concentration during the oxidation of 2,4-D in  $[Fe(III)+WB]/H_2O_2$  and WB/H<sub>2</sub>O<sub>2</sub>. The solid lines represent that measured using ionic chromatograph following a method reported previously <sup>[2]</sup>. The dot lines represent that theoretically calculated from the removal of 2,4-D. Dosage: Fe(III) =0.30 mg/L, WB = 3.0 g/L, and H<sub>2</sub>O<sub>2</sub> = 5.0 mmol/L; and pH<sub>0</sub> = 3.0.



**Fig. S3**. Removal of sulfamethazine (SMZ) ( $C_0 = 20 \text{ mg/L}$ ) in the systems using different combination of trace Fe(III) (0.30 mg/L), biochar (LB) (3.0 g/L) and/or H<sub>2</sub>O<sub>2</sub> (5.0 mmol/L), and pH<sub>0</sub> = 3.0.



**Fig. S4.** Removal of 2,4-D ( $C_0 = 20 \text{ mg/L}$ ) in different oxidation systems with the presence of scavengers: (a) methanol = 50 mmol/L, and (b) chloroform = 50 mmol/L. The solid lines represent the reaction systems with addition of scavengers (CH<sub>3</sub>OH or CHCl<sub>3</sub>). The dash lines represent the systems without scavenger. Dosage: Fe(III) =0.30 mg/L, LB = 3.0 g/L, and H<sub>2</sub>O<sub>2</sub> = 5.0 mmol/L; and pH<sub>0</sub> = 3.0.



**Fig. S5**. The  $k_{obs}$  values for 2,4-D (20 mg/L) degradation in different oxidation systems. Dosage: WB = 1.0 g/L, H<sub>2</sub>O<sub>2</sub> = 5.0 mmol/L, and iron minerals (Fe<sub>3</sub>O<sub>4</sub> or Fe<sub>2</sub>O<sub>3</sub>) =1.0 g/L; and pH<sub>0</sub> = 3.0.



**Fig. S6**. Photos of the clear solution after reaction in  $[Fe(III)+LB]/H_2O_2$ , left: initial pH of 3.0, and right: pH adjusted to 6.5. Dosage: Fe(III) =0.30 mg/L, LB = 3.0 g/L, and H<sub>2</sub>O<sub>2</sub> = 5.0 mmol/L; and pH<sub>0</sub> = 3.0.



**Fig. S7**. FTIR spectra of the LB and WB samples before use, and recycled after reaction from the co-catalytic systems.



**Fig. S8**. Adsorption isotherms of 2,4-D by LB and WB sample (3.0 g/L), after equilibrium for 24 h at 25 °C and pH 3.0.



**Fig. S9.** Change of pH during the reaction in  $[Fe(III)+LB]/H_2O_2$  using various pH<sub>0</sub>. Experimental conditions:  $C_0$  (2,4-D) = 20 mg/L, LB = 3.0 g/L, H<sub>2</sub>O<sub>2</sub> = 5.0 mmol/L, and Fe(III) = 0.30 mg/L.



**Fig. S10.** Removal of 2,4-D ( $C_0 = 20 \text{ mg/L}$ ) by [Fe(III)+LB]/H<sub>2</sub>O<sub>2</sub> with various LB dosage. Experimental conditions: Fe(III) = 0.30 mg/L, and H<sub>2</sub>O<sub>2</sub> = 5.0 mmol/L; and pH<sub>0</sub> = 3.0.



Fig. S11. XRD patterns of WB sample before use and recycled after reaction from the co-catalytic system.



Fig. S12. SEM images of WB sample before use (left) and recycled after reaction (right).

## References

- [1] D. Feng, J. Lü, S. Guo and J. Li, Biochar enhanced the degradation of organic pollutants through a Fenton process using trace aqueous iron, J. Environ. Chem. Eng., 2021, 9, 104677, https://doi.org/10.1016/j.jece.2020.104677.
- [2] X. Zhu, J. Li, B. Xie, D. Feng and Y. Li, Accelerating effects of biochar for pyrite-catalyzed Fenton-like oxidation of herbicide 2,4-D, Chem. Eng. J., 2020, 391, 123605, https://doi.org/10.1016/j.cej.2019.123605.