Supporting Information for

Poly(ethylene glycol)-Functionalized 3D Covalent Organic Framework as Solid-state Polyelectrolytes

Miaomiao Wu,^{‡a} Hongrui Huang,^{‡a} Bingqing Xu*a and Gen Zhang*a

^a Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China

[‡]M. Wu and H. Huang contributed equally to this work.

*bingqingxu@njust.edu.cn (B.X.); *zhanggen@njust.edu.cn (G.Z.)

Table of Content

1 Materials and general methods	3
1.1 Materials	3
1.2 Characterization	3
1.3 Ionic conduction measurements	3
1.4 Li ⁺ Transference number (t _{Li+}) measurements	4
1.5 Electrochemical stability window	4
2. Synthesis	5
2.1 Synthesis of PEG2-CHO	5
2.2 Synthesis of PEG3-CHO	6
2.3 Synthesis of PEG6-CHO	7
2.4 Synthesis of 3D-COF-PEG2	9
2.5 Synthesis of 3D-COF-PEG3	10
2.6 Synthesis of 3D-COF-PEG6	11
2.7 Synthesis of 3D-COF-PEGx-Li (x = 2, 3, 6)	11
3 Characterization	12
References:	23

1 Materials and general methods

1.1 Materials

All chemicals are used as received without further purification. All solvents were dried and distilled via normal approaches. 2,5-dibromobenzene-1,4-diol, K₂CO₃, NaOH, from energy chemical (Shanghai, China). 4-formylphenylboronic acid, Pd(PPh₃)₄, *p*-toluenesulfonyl chloride, triethylene glycol monomethyl ether, KOH, 2,2'-(ethane-1,2-diylbis(oxy))bis(ethan-1-ol), Bistrifluoromethanesulfonimide lithium salt (LiTFSI) was provided by Heowns Biochem Technologies LLC (Tianjin, China).

1.2 Characterization

PXRD patterns were collected on a Bruker D8 Advance diffractometer using Cu Kα radiation. Fourier Transform Infrared spectra were measured on a Thermo Fisher Scientific with Universal ATR accessory between the ranges of 4000 to 550 cm⁻¹. N₂ adsorption/desorption measurements were performed on a BELSORP II mini, samples were activated at 100 °C for 12 h with BELPREP VAC III before the measurement. TGA was performed using a TGA/SDTA851E under flowing N₂ with 10 K min⁻¹ ramp rate from 50 °C-900 °C. SEM images were collected using a JSM-IT500HR system. Differential scanning calorimetry (DSC) was carried out with a Hitachi DSC7020 at the heating rate of 10 K min⁻¹. The solid NMR of ⁷Li in the sample were recorded on AVANCE III WB 400 MHz of Bruker.

1.3 Ionic conduction measurements

The samples were pressed into pellets with a diameter of 5 mm, and then sandwiched between two stainless steel electrodes. AC impedance measurements were carried out by Biological SP-200 portable working station, and the frequency range was from 7 M to 0.1 Hz, the amplitude voltage was 20 mV, the temperature range was from

100 to 260 °C. The ionic conductivities of the materials were calculated by the equation (1):

$$\sigma = L / (S \times R) \tag{1}$$

where L (cm) is the thickness of electrolyte pellet, S is the area (cm²) of electrolyte pellet, and R is the impedance (Ω) which can be obtained directly from AC impedance measurement curves.

1.4 Li⁺ Transference number (t_{Li+}) measurements

The samples were pressed into pellets with a diameter of 5 mm, and then sandwiched between two lithium mental foils electrodes with a thickness of around 200 μ m to assemble into lithium symmetric coin cell. Li⁺ transference number (t_{Li}⁺) measurements of 3D-COF-PEG6-Li were carried out by Biological SP-200 portable working station with a constant bias voltage of 50 mV at 100 °C. The t_{Li}⁺ of 3D-COF-PEG6-Li were calculated by the equation (2):

$$t_{Li^+} = \frac{I_s[\Delta V - I_0 R_0]}{I_0[\Delta V - I_s R_s]}$$
(2)

where ΔV (mV) is polarization voltage, I_0 (μA) and I_s (μA) are initial current and steady-state current obtained by constant voltage polarization method testing, R_0 ($k\Omega$) and R_s ($k\Omega$) are the interface resistance before and after the test.

1.5 Electrochemical stability window

The samples were pressed into pellets with a diameter of 5 mm, then were sandwiched between a stain steel and a lithium mental foil and assembled into coin cell. The electrochemical stability window of samples was obtained by a linear sweep voltammetry at the scanning rate of 1.0 mV/s from open circuit voltage to 6.0 V at $100 \text{ }^{\circ}\text{C}$.

2. Synthesis

2.1 Synthesis of 2',5'-bis(2-(2-methoxyethoxy)ethoxy)-[1,1':4',1''-terphenyl]-4,4''dicarbaldehyde (PEG2-CHO)

Synthesis of 1,4-dibromo-2,5-bis(2-(2-methoxyethoxy)ethoxy)benzene (1a): To a 100 mL Schlenk, 2,5-dibromobenzene-1,4-diol (2.14 g, 8.0 mmol), K₂CO₃ (5.52 g, 40.0 mmol) were added, then the flak was vacuumed for 30 minutes, during which argon gas was pumped three times. Under Ar atmosphere, dry acetonitrile (40 mL) and 1-bromo-2-(2-methoxyethoxy)ethane (2.4 mL, 17.5 mmol) were added, and the reaction was stirred at 90 °C for 12 h. The mixture was filtered and concentrated in vacuum. Silica gel column chromatography (hexane/ ethyl acetate; 1/1) was used to afford 1a as white powders (yield: 67%)

Synthesis of PEG2-CHO: To a 250 mL Schlenk, 1a (2.36 g, 5 mmol), 4formylphenylboronic acid (2.26 g, 15 mmol), Pd(PPh₃)₄ (340 mg) and K₂CO₃ (2.07 g, 15 mmol) were dissolved in dry tetrahydrofuran (100 mL) and anaerobic water (20 mL) under Ar atmosphere. The reaction was stirred at 80 °C overnight. After cooling to room temperature, solvent was concentrated in vacuo and extracted with CH₂Cl₂, washed with H₂O (3×30mL), separated, dried over Na₂SO₄, filtered, and concentrated. The crude product was purified by column chromatography (hexane/ ethyl acetate; 1/1) to afford PEG2-CHO as off-white powders (yield: 56%)

2.2 Synthesis of 2',5'-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-[1,1':4',1''terphenyl]-4,4''-dicarbaldehyde (PEG3-CHO)

Synthesis of 2-(2-(2-methoxyethoxy)ethoxy)ethyl 4-methylbenzenesulfonate (2a): ptoluenesulfonyl chloride (5.72 g, 30.0 mmol) was dissolved in 8 mL tetrahydrofuran under Ar atmosphere, and cold to 0 °C. NaOH (1.20 g, 30 mmol) in 8 mL anaerobic water and triethylene glycol monomethyl ether (3.28g, 20 mmol) were added dropwise at 0 °C under Ar. The reaction was stirred at room temperature for 3 h. The organic layer was extracted with diethyl ether, washed with sat. aq. NaOH and H₂O, dried over Na₂SO₄ and the solvent was concentrated under vacuum to afford 5b as colorless oil (yield: 84%).

Synthesis of 1,4-dibromo-2,5-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzene (2b): 2,5-dibromobenzene-1,4-diol (1.07 g, 4 mmol) and potassium tert-butoxide (1.12 g, 10 mmol) were dissolved in 20 mL ethyl alcohol under Ar atmosphere. Then 2a (3.18 g, 10 mmol) was added to the above system at room temperature. The reaction was heated to reflux, and stirred for 48 h under Ar. After cooling to room temperature, H₂O (20 mL) was added, and organic layer was extracted with CH₂Cl₂, washed with sat. aq. NaOH and H₂O, dried over Na₂SO₄ and the solvent was concentrated under vacuum to afford crude product, which was used for next reaction without further purified.

Synthesis of (PEG3-CHO): To a 250 mL Schlenk, 2b (2.24 g, 4 mmol), 4formylphenylboronic acid (1.81 g, 12 mmol), Pd(PPh₃)₄ (280 mg) and K₂CO₃ (1.67 g, 12 mmol) were dissolved in dry tetrahydrofuran (100 mL) and anaerobic water (20 mL) under Ar atmosphere. The reaction was stirred at 80 °C overnight. After cooling to room temperature, solvent was concentrated in vacuo and extracted with CH₂Cl₂, washed with H₂O (3×30mL), separated, dried over Na₂SO₄, filtered, and concentrated. The crude product was purified by recrystallization from CH₂Cl₂ and methanol to afford PEG3-CHO as off-white powders (yield: 61%).

2.3 Synthesis of 2',5'-bis((2,5,8,11,14,17-hexaoxanonadecan-19-yl)oxy)-[1,1':4',1''terphenyl]-4,4''-dicarbaldehyde (PEG6-CHO)^[S1-S2]

Synthesis of 2,5,8,11,14,17-hexaoxanonadecan-19-ol (3a): To a 100 mL Schlenk, KOH (1.85 g, 33 mmol), dry tetrahydrofuran (20 mL) and 2,2'-(ethane-1,2-diylbis(oxy))bis(ethan-1-ol) (16 mL, 120 mmol) were added under Ar atmosphere, the mixture was reflux for 30 minutes. The reaction was cooled to room temperature, treated with 2a (9.55 g, 30 mmol), and kept reflux for 18 h. After cooling to room

temperature, solvent was concentrated in vacuum and extracted with CHCl₃, dried over Na₂SO₄, filtered, and concentrated to afford 3a as off-white oil (yield: 93%).

Synthesis of 2,5,8,11,14,17-hexaoxanonadecan-19-yl 4-methylbenzenesulfonate (3b): p-toluenesulfonyl chloride (5.72 g, 30.0 mmol) was dissolved in 8 mL tetrahydrofuran under Ar atmosphere, and cold to 0 °C. NaOH (1.20 g, 30 mmol) in 8 mL anaerobic water and triethylene glycol monomethyl ether (5.93g, 20 mmol) were added dropwise at 0 °C under Ar. The reaction was stirred at room temperature for 3 h. The organic layer was extracted with diethyl ether, washed with sat. aq. NaOH and H₂O, dried over Na₂SO₄ and the solvent was concentrated under vacuum to afford 3b as colorless oil (yield: 91%).

Synthesis of 19,19'-((2,5-dibromo-1,4-phenylene)bis(oxy))bis(2,5,8,11,14,17-hexaoxanona decane) (3c): 2,5-dibromobenzene-1,4-diol (1.07 g, 4 mmol) and potassium tert-butoxide (1.12 g, 10 mmol) were dissolved in 20 mL ethyl alcohol under Ar atmosphere. Then 3b (4.5 g, 10 mmol) was added to the above system at room temperature. The reaction was heated to reflux, and stirred for 48 h under Ar. After cooling to room temperature, H₂O (20 mL) was added, and organic layer was extracted with CH₂Cl₂, washed with sat. aq. NaOH and H₂O, dried over Na₂SO₄ and the solvent was concentrated under vacuum to afford crude product as off-white oil.

Synthesis of PEG6-CHO: To a 250 mL Schlenk, 3c (3.30 g, 4 mmol), 4formylphenylboronic acid (1.81 g, 12 mmol), Pd(PPh₃)₄ (280 mg) and K₂CO₃ (1.67 g, 12 mmol) were dissolved in dry tetrahydrofuran (100 mL) and anaerobic water (20 mL) under Ar atmosphere. The reaction was stirred at 80 °C overnight. After cooling to room temperature, solvent was concentrated in vacuum and extracted with CH₂Cl₂, washed with H₂O (3×30mL), separated, dried over Na₂SO₄, filtered, and concentrated. The crude product was purified by column chromatography to afford PEG6-CHO as faint yellow oil (yield: 48%).

2.4 Synthesis of 3D-COF-PEG2

PEG2-CHO (52.2 mg, 0.10 mmol) and Tetrakis(4-aminophenyl)methane (**TAPM**, 19.0 mg, 0.05 mmol) were weighed into a Pyrex tube, then mesitylene (1.5 mL), dioxane (0.5 mL) were added. After ultrasound for 5 min, 6 M acetic acid (0.2 mL) was added as catalyst. The ampoule was degassed through freeze-pump-thaw cycles for three times and flame sealed. The reaction was kept at 120 °C for 6 days, then the solid was filtrated and washed with DMF and acetone, then the powders were carried out by soxhlet extraction from methanol and acetone for 48 h to give yellow powders. The sample was dried at 80 °C under vacuum for 24 h to yield **3D-COF-PEG2** (56 mg, 82.8%)

2.5 Synthesis of 3D-COF-PEG3

PEG3-CHO (61.0 mg, 0.10 mmol) and **TAPM** (19.0 mg, 0.05 mmol) were weighed into a Pyrex tube, then mesitylene (1.5 mL), dioxane (0.5 mL) were added. After ultrasound for 5 min, 6 M acetic acid (0.2 mL) was added as catalyst. The ampoule was degassed through freeze-pump-thaw cycles for three times and flame sealed. The reaction was kept at 120 °C for 6 days, then the solid was filtrated and washed with DMF and acetone, then the powders were carried out by soxhlet extraction from methanol and acetone for 48 h to give yellow powders. The sample was dried at 80 °C under vacuum for 24 h to yield **3D-COF-PEG3** (67 mg, 87.7%)

2.6 Synthesis of 3D-COF-PEG6

PEG6-CHO (87.5 mg, 0.10 mmol) and **TAPM** (19.0 mg, 0.05 mmol) were weighed into a Pyrex tube, then mesitylene (2 mL) were added. After ultrasound for 5 min, 6 M acetic acid (0.2 mL) was added as catalyst. The ampoule was degassed through freeze-pump-thaw cycles for three times and flame sealed. The reaction was kept at 120 °C for 6 days, then the solid was filtrated and washed with DMF and acetone, the powders were carried out by soxhlet extraction from methanol and acetone for 48 h to give yellow powders. The sample was dried at 80 °C under vacuum for 24 h to yield **3D-COF-PEG6** (52 mg, 50.5%).

2.7 Synthesis of 3D-COF-PEGx-Li (x = 2, 3, 6)

Lithium bis(trifluoromethanesulphonyl)imide (LiTFSI) was dissolved in Tetrahydrofuran (THF) to obtain 1M LiTFSI/THF solution. **3D-COF-PEGx** ($\mathbf{x} = 2, 3, 6$) powders (100 mg) were soaked in 30 mL 1M LiTFSI/THF solution at room temperature, after soaking for 12 h, the powders were collected by filtration. Repeat this operation for three times. Then, the samples were dried under vacuum at 100 °C overnight to obtain Lithium ion doped materials, denoted as **3D-COF-PEGx-Li** ($\mathbf{x} = 2, 3, 6$).

3 Characterization

Figure S1. PXRD patterns of 3D-COF-PEG2-Li, 3D-COF-PEG3-Li and 3D-COF-PEG6-Li.

Figure S2. N2 adsorption of 3D-COF-PEG2-Li, 3D-COF-PEG3-Li and 3D-COF-PEG6-Li.

Figure S3. TG plots of 3D-COF-PEG2, 3D-COF-PEG3 and 3D-COF-PEG6.

Figure S4. DSC curves of 3D-COF-PEG2-Li, 3D-COF-PEG3-Li and 3D-COF-PEG6-Li.

Figure S5. FT-IR plots of (a) 3D-COF-PEG2, PEG2-CHO and TAPM (b) 3D-COF-PEG3, PEG3-CHO and TAPM (c) 3D-COF-PEG6, PEG6-CHO and TAPM (d) 3D-COF-PEG2 and 3D-COF-PEG2-Li and (e) 3D-COF-PEG6 and 3D-COF-PEG6-Li.

Figure S6. TEM images of 3D-COF-PEG2.

Figure S7. TEM images of 3D-COF-PEG3.

Figure S8. TEM images of 3D-COF-PEG6.

Figure S9. Nyquist plots at different temperatures of 3D-COF-PEG2-Li.

Figure S10. Nyquist plots at different temperatures of 3D-COF-PEG3-Li.

Figure S11. Nyquist plots at different temperatures of 3D-COF-PEG6-Li.

Figure S12. Temperature-dependent Li⁺ conductivities of 3D-COF-PEG2-Li, 3D-COF-PEG3-Li, 3D-COF-PEG6-Li.

Figure S13. Linear sweep voltammograms (LSV) of 3D-COF-PEG2-Li and 3D-COF-PEG3-Li at 100 °C.

	Materials	Temperature	Conductivity (mS cm ⁻¹)	Reference
1	3D-COF-PEG2-Li	200 °C	0.0026	
2	3D-COF-PEG3-Li	200 °C	0.010	This work
3	3D-COF-PEG6-Li	200 °C	0.11	
4	COF-PEO-3-Li	200 °C	0.097	
5	COF-PEO-6-Li	200 °C	0.37	J. Am. Chem. Soc. 2019, 141, 1227-1234.
6	COF-PEO-9-Li	200 °C	1.33	
7	Li ⁺ @TPB-DMTP-COF	80 °C	0.0054	J. Am. Chem. Soc. 2018, 140, 7429-7432.
8	COF-PEG-B6-Li	200 °C	1.5	ACS Appl. Energy Mater. 2021 , <i>4</i> , 11720- 11725.
9	TpPa-SO3Li	RT	0.027	J. Am. Chem. Soc. 2019, 141, 5880-5885.

Table S1. Li^+ conductivity comparison between this work and literatures.

Figure S19. HRMS spectra of PEG3-CHO.

Figure S21. ¹³C NMR of PEG6-CHO.

Space group: FDD	D		
3D tetragonal; a =	58.22 Å, b = 57.87 Å, c =	= 15.21 Å; $\alpha = \beta = \gamma = 90$)°
Atom	x	y	Z
C1	0.31607	0.66706	0.61186
C2	0.30716	0.65308	0.67904
C3	0.32167	0.64208	0.73973
C4	0.34571	0.64465	0.73604
C5	0.3547	0.65861	0.66831
C6	0.34011	0.66959	0.60704
C7	0.36103	0.63396	0.80552
C8	0.29966	0.67909	0.55081
N9	0.30628	0.6916	0.48408
C10	0.29139	0.70436	0.42439
C11	0.35716	0.61138	0.83833
C12	0.37086	0.60304	0.90831
C13	0.44993	0.53836	0.40659
C14	0.46322	0.52477	0.46432
C15	0.48535	0.51673	0.44087
C16	0.49459	0.52578	0.36235
C17	0.4814	0.53947	0.30505
O18	0.34014	0.59766	0.79737
C19	0.33749	0.57371	0.8207
C20	0.35827	0.55909	0.79237
O21	0.36769	0.54803	0.8667

 Table S2. Fractional atomic coordinates for simulated 3D-COF-PEG2

C22	0.38975	0.53903	0.84804
C23	0.09796	0.53499	0.56604
O24	0.07529	0.52732	0.58269
C25	0.06209	0.52931	0.50574
H26	0.28876	0.6507	0.68498
H27	0.31408	0.63163	0.79078
H28	0.37309	0.66096	0.66252
H29	0.34754	0.68018	0.5561
H30	0.28152	0.67678	0.56347
H31	0.36793	0.58606	0.93434
H32	0.43269	0.54338	0.42498
H33	0.45593	0.5203	0.52698
H34	0.51206	0.52164	0.34363
H35	0.48902	0.54465	0.24391
H36	0.32196	0.56697	0.7871
H37	0.33392	0.57174	0.89161
H38	0.37076	0.5708	0.75935
H39	0.35267	0.5459	0.74405
H40	0.40066	0.5511	0.80921
H41	0.38834	0.52231	0.81255
H42	0.10767	0.52182	0.52814
H43	0.09848	0.55168	0.52974
H44	0.04486	0.52172	0.51763
H45	0.0699	0.51971	0.44998
H46	0.05933	0.54773	0.48803
C47	0.25	0.75	0.25

References:

(S1) J. Y. Z. Wu, L. Y. You, L. Lan, H. J. Lee, S. T. Chaudhry, R. Li, J. X. Cheng, J. G. Mei, *Adv. mater.*, 2017, **29**, 173403.

(S2) G. Zhang, Y. L. Hong, Y. Nishiyama, S. Bai, S. Kitagawa, S. Horike, *J. Am. Chem. Soc.*, 2019, **141**, 1227-1234.

(S3) Materials Studio; Accelrys: San Diego.