Supporting Information:

Noncovalently bound excited-state dimers: a perspective on current time-dependent Density Functional Theory approaches applied to aromatic excimer models

Amy C. Hancock and Lars Goerigk*

School of Chemistry, The University of Melbourne, Victoria 3010, Australia; $Ph\colon +61\text{-}(0)3\text{-}83446784$

E-mail: lars.goerigk@unimelb.edu.au

Contents

SI.1 Expl	icit definition of coordinates defining inter-monomer distance	S-3
SI.2 Addi	itional Data for Establishing Suitable Wavefunction Reference Method	S-3
SI.2.1	Numerical Data for Wavefunction Methods	. S-3
SI.2.2	SCS-CC2 Dissociation Curves Comparing Basis Sets and Extrapolation to Complete Basis Set Limit	. S-4
SI.3 The	ω B97X Problem	S-6
SI.4 Addi	itional Data For Benchmarking TD-DFT methods	S-7
SI.4.1	Fock Exchange Study	. S-7
	SI.4.1.1 Tables of Minima and Signed Percentage Errors	. S-7
	SI.4.1.2 Dissociation Curves	S-8
SI.4.2	DFT-D Corrected TD-DFT	. S-9
	SI.4.2.1 Dissociation Curves	
	SI.4.2.2 Unphysical Positive Regions in Mid-range of Dissociation Curves	.S-11
SI.4.3	Numerical Data For Binding Minima and Associated Percentage errors	.S-14
SI.4.4	Mean Absolute Deviations	.S-17
Reference		S-18

SI.1 Explicit definition of coordinates defining intermonomer distance

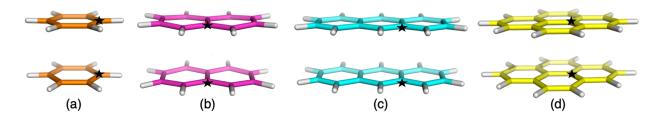


Figure S1: Diagrams of excimer model structures illustrating the atomic coordinates used to define the inter-monomer distance for dissociation energy curves. Z-matrix templates used for defining the inter-monomer distance from these coordinates is given in the other supplementary files. Refer to README file for usage; xyz of optimised dimers are also provided.

SI.2 Additional Data for Establishing Suitable Wavefunction Reference Method

SI.2.1 Numerical Data for Wavefunction Methods

Table S1: Explicit minima of SCS-CC2 and CC2 interaction energy curves for the basis set study. The distance of the minimum is denoted r_e (Å) and the associated interaction energy at that position ΔE (kcal/mol).

	SCS	S-CC2	CC2		
Basis set	r_e	ΔE	r_e	ΔE	
def2-SVP	2.99	-12.60	2.90	-18.22	
def2-TZVP	2.99	-13.18	2.90	-20.19	
def2-QZVP	2.99	-13.29	2.90	-20.64	
cc- $pVTZ$	3.00	-12.99	2.90	-19.95	
def2-TZVPD	3.00	-15.61	2.90	-22.75	
$\operatorname{aug-cc-pVTZ}$	3.00	-15.03	2.90	-22.37	

Table S2: CCSDR(3) and SCS-CC2 interaction energies (kcal/mol) relative to the excited state asymptote (value at 16 Å) for Karlsruhe basis sets and CBS limit extrapolations.

		CCSDR(3)		SCS-	CC2
Distance (Å)	def2-SVP	def2-TZVP	CBS(2,3)	CBS(2,3)	CBS(3,4)
2.90	-10.72	-11.31	-13.06	-14.56	-13.40
2.95	-11.19	-11.76	-13.41	-14.76	-13.63
3.00	-11.39	-11.96	-13.52	-14.73	-13.62
3.05	-11.36	-11.96	-13.42	-14.52	-13.42

SI.2.2 SCS-CC2 Dissociation Curves Comparing Basis Sets and Extrapolation to Complete Basis Set Limit

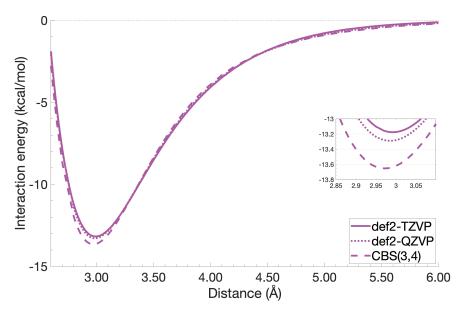


Figure S2: Dissociation curves for the lowest-lying excited state of the fully-stacked benzene dimer with SCS-CC2 across two successive basis sets in the Karlsruhe family (def2-nZVP) and their complete basis set extrapolated result, CBS(3,4). A magnified snapshot of the minima is shown to the right.

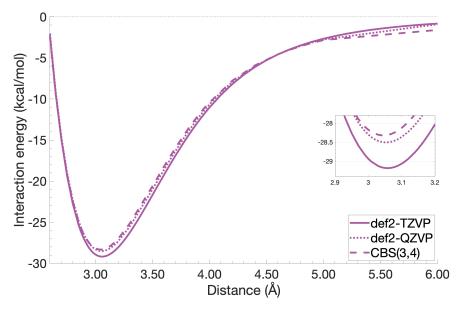


Figure S3: Dissociation curves for the lowest-lying excited state of the fully-stacked naphthalene dimer with spin-component scaled CC2 (SCS-CC2) across two successive basis sets in the Karlsruhe family (def2-nZVP) and their complete basis set extrapolated result, CBS(3,4). A magnified snapshot of the minima is shown to the right.

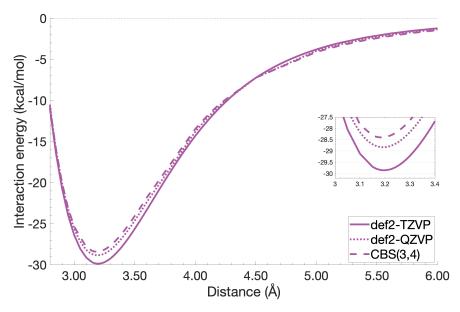


Figure S4: Dissociation curves for the lowest-lying excited state of the fully-stacked anthracene dimer with spin-component scaled CC2 (SCS-CC2) across two successive basis sets in the Karlsruhe family (def2-nZVP) and their complete basis set extrapolated result, CBS(3,4). A magnified snapshot of the minima is shown to the right.

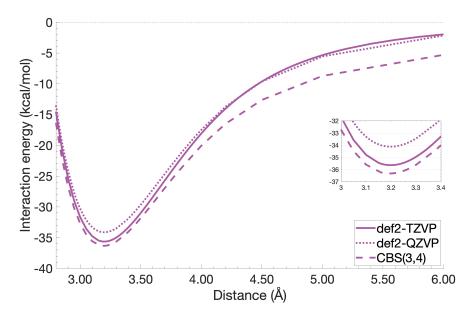


Figure S5: Dissociation curves for the lowest-lying excited state of the fully-stacked pyrene dimer with spin-component scaled CC2 (SCS-CC2) across two successive basis sets in the Karlsruhe family (def2-nZVP) and their complete basis set extrapolated result, CBS(3,4). A magnified snapshot of the minima is shown to the right.

SI.3 The ω B97X Problem

There were some unanticipated technical problems for $\omega B97X$ resulting in wobbly interaction energy curves as shown in the figures below.

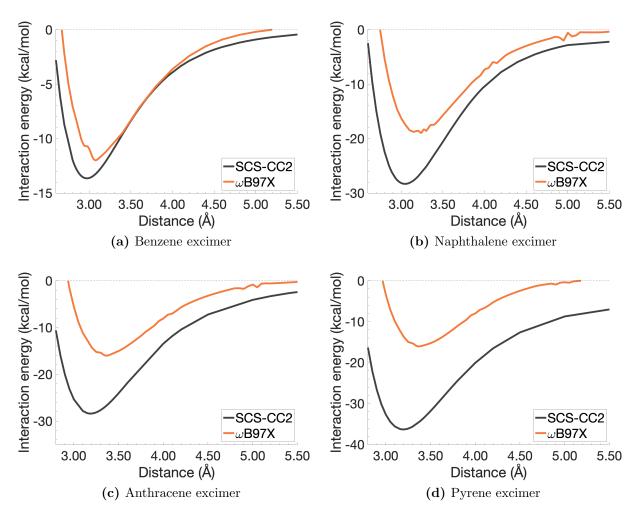


Figure S6: Dissociation energy curves for ω B97X and SCS-CC2/CBS(3,4) for each excimer. Due to the difficulty of identifying the actual minima for ω B97X we defined each D_e and r_e from the observed minimum of each curve.

SI.4 Additional Data For Benchmarking TD-DFT methods

SI.4.1 Fock Exchange Study

SI.4.1.1 Tables of Minima and Signed Percentage Errors

Table S3: Dissociation energies $(D_e; \text{kcal/mol})$, equilibrium inter-monomer distances $(r_e; \text{Å})$ and signed percentage errors relative to the SCS-CC2/CBS(3,4) reference for TD-BLYP and global hybrid variants with varied amounts of Fock exchange.

Excimer	Benzene	Naphthalene	Anthracene	Pyrene	Benzene	Naphthalene	Anthracene	Pyrene
Fock exchange (%)		D_e				r_e		
0	10.56	0.73	-	-	3.23	3.57	-	-
20^{a}	10.68	14.69	9.18	10.60	3.15	3.37	3.61	3.67
37.5^{b}	6.85	9.69	3.77	4.70	2.95	3.14	3.39	3.44
50^c	8.10	11.79	6.88	8.22	3.13	3.29	3.51	3.54
75^d	3.66	1.95	-	-	2.76	2.97	-	-
Fock exchange (%)		Percent err	for in D_e		Percent error in r_e (%)			
0^a	-22.7	-97.4	-	-	8.8	17.4	-	-
20^{a}	-21.7	-48.1	-67.7	-70.8	6.1	10.9	13.5	15.0
37.5^{b}	-49.8	-65.8	-86.7	-87.1	-0.7	3.3	6.6	7.8
50^{c}	-40.7	-58.4	-75.8	-77.4	5.4	8.2	10.4	11.0
75^{d}	-73.2	-93.1	-	-	-7.1	-2.3	-	

^a B3LYP functional. ^b Dubbed "B38LYP" functional in Fig. S7. ^c BHLYP functional. ^dBLYP(75) do not predict minima for the anthracene and pyrene excimer states; see Fig. S7.

Table S4: Dissociation energies (D_e) , equilibrium inter-monomer distances (r_e) and signed percentage errors relative to the SCS-CC2/CBS(3,4) reference for TD-PBE and global hybrid variants with varied amounts of Fock exchange.

Excimer	Benzene	Naphthalene	Anthracene	Pyrene	Benzene	Naphthalene	Anthracene	Pyrene
Fock exchange (%)		D_e (kcal	l/mol)			r_e (2	Å)	
0	8.46	5.42	3.23	1.76	3.13	3.36	3.60	3.71
20	14.12	18.26	12.24	13.75	2.95	3.15	3.38	3.44
37.5^{a}	5.69	15.30	9.04	10.24	3.17	3.03	3.26	3.30
50	10.19	12.90	6.59	7.13	2.78	2.96	3.19	3.23
75	7.95	7.16	1.29	0.91	2.67	2.86	3.14	3.23
Fock exchange (%)		Error in .	D_e (%)		Error in r_e (%)			
0	-38.0	-80.9	-88.6	-95.1	5.4	10.5	13.2	16.3
20	3.4	-35.5	-56.9	-62.1	-0.7	3.6	6.3	7.8
37.5^{a}	-58.3	-46.0	-68.2	-71.8	6.7	-0.3	2.5	3.4
50	-25.4	-54.4	-76.8	-80.4	-6.4	-2.6	0.3	1.3
75	-41.7	-74.7	-95.5	-97.5	-10.1	-5.9	-1.3	1.3

^a PBE38 functional.

SI.4.1.2 Dissociation Curves

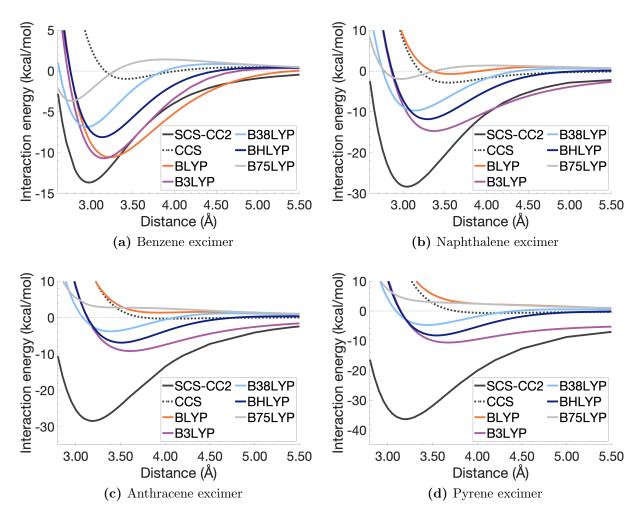


Figure S7: Dissociation energy curves for TD-BLYP and global hybrid variants with varied amounts of Fock exchange. CCS curves are also shown.

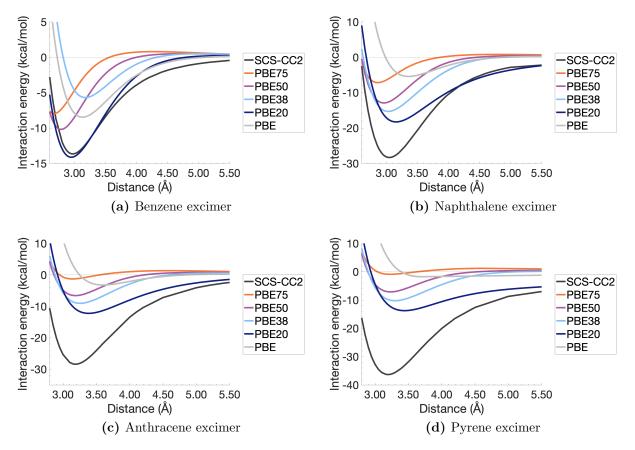


Figure S8: Dissociation energy curves for TD-PBE and global hybrid variants with varied amounts of Fock exchange.

SI.4.2 DFT-D Corrected TD-DFT

SI.4.2.1 Dissociation Curves

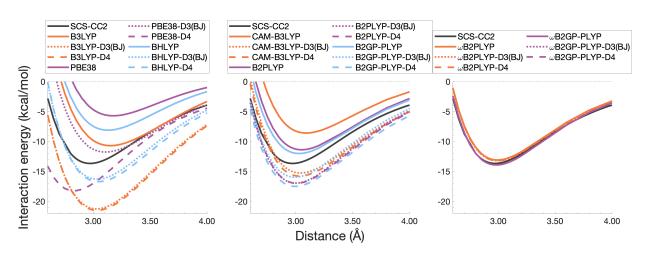


Figure S9: Dissociation energy curves for the benzene excimer comparing density functional approximations, with and without DFT-D type dispersion corrections, to the SCS-CC2/CBS(3,4) reference. All TD-DFT results are based on the def2-TZVP basis set.

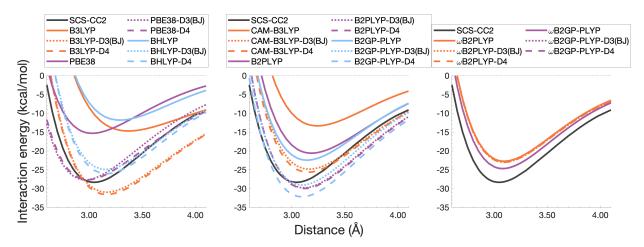


Figure S10: Dissociation energy curves for the naphthalene excimer comparing density functional approximations, with and without DFT-D type dispersion corrections, to the SCS-CC2/CBS(3,4) reference. All TD-DFT results are based on the def2-inter-monomerTZVP basis set.

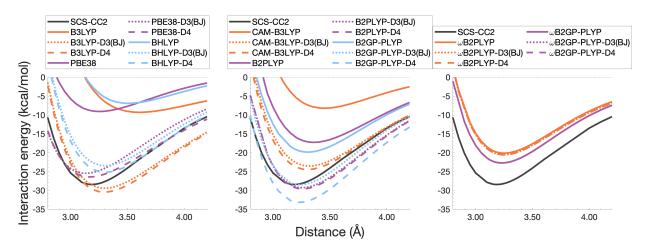


Figure S11: Dissociation energy curves for the anthracene excimer comparing density functional approximations, with and without DFT-D type dispersion corrections, to the SCS-CC2/CBS(3,4) reference.

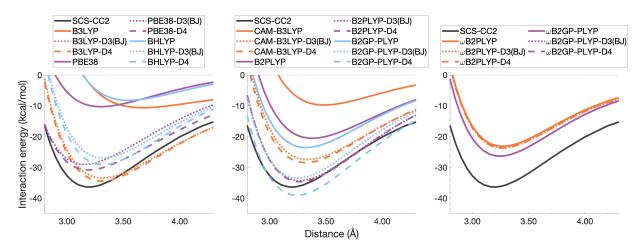


Figure S12: Dissociation energy curves for the pyrene excimer comparing density functional approximations, with and without DFT-D type dispersion corrections, to the SCS-CC2/CBS(3,4) reference.

SI.4.2.2 Unphysical Positive Regions in Mid-range of Dissociation Curves

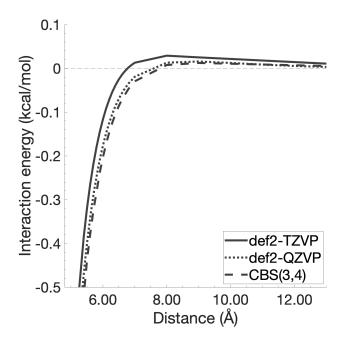


Figure S13: Mid-range region of SCS-CC2 dissociation curves for the benzene excimer with two truncated basis sets and their CBS(3,4) extrapolation.

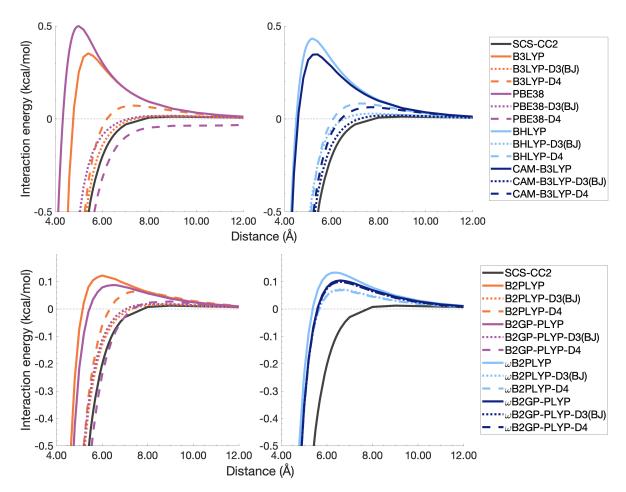


Figure S14: Mid-range region of the dissociation energy curves for the benzene excimer comparing density functional approximations, with and without DFT-D type dispersion corrections, to the SCS-CC2/CBS(3,4) reference.

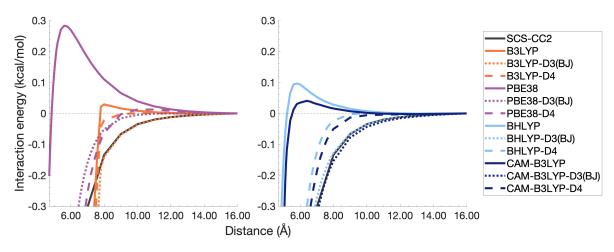


Figure S15: Mid-range region of the dissociation energy curves for the naphthalene excimer comparing density functional approximations, with and without DFT-D type dispersion corrections, to the SCS-CC2/def2-TZVP reference. All TD-DFT results are based on the def2-TZVP basis set. As distances beyond the binding region were not the focus of the paper, some curves may show strange shapes in the mid-range due to the small number of data points however they still showcase the identified positive region.

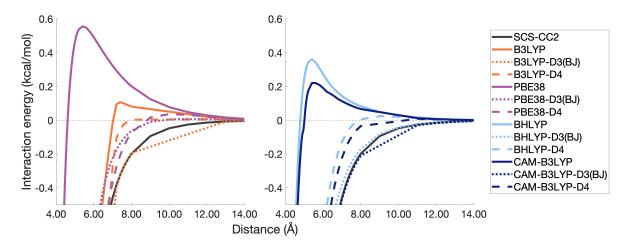


Figure S16: Mid-range region of the dissociation energy curves for the anthracene excimer comparing density functional approximations, with and without DFT-D type dispersion corrections, to the SCS-CC2/def2-TZVP reference. All TD-DFT results are based on the def2-TZVP basis set. As distances beyond the binding region were not the focus of the paper, some curves may show strange shapes in the mid-range due to the small number of data points however they still showcase the identified positive region.

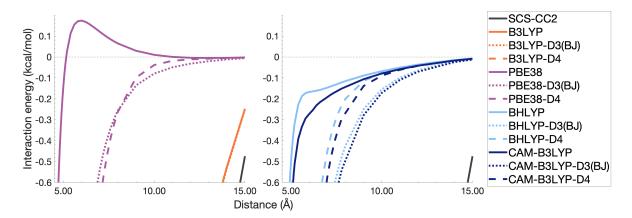


Figure S17: Mid-range region of the dissociation energy curves for the pyrene excimer comparing density functional approximations, with and without DFT-D type dispersion corrections, to the SCS-CC2/def2-TZVP reference. All TD-DFT results are based on the def2-TZVP basis set. As distances beyond the binding region were not the focus of the paper, some curves may show strange shapes in the mid-range due to the small number of data points however they still showcase the identified positive region.

SI.4.3 Numerical Data For Binding Minima and Associated Percentage errors

Table S5: Binding of the benzene excimer described by the dissociation energy $(D_e; \text{kcal/mol})$, equilibrium inter-monomer distance $(r_e; \text{Å})$ and the unsigned percentage errors of each compared to that of the SCS-CC2/CBS(3,4) reference.

	r_e					
Functional	Uncorrected	D3(BJ)	D4	Uncorrected	D3(BJ)	D4
B3LYP	10.68	21.24	21.47	3.15	3.03	3.03
PBE38	5.69	11.75	18.20	3.17	3.11	2.85
BHLYP	8.10	16.28	16.69	3.13	3.03	3.05
CAM-B3LYP	8.58	15.24	15.77	3.09	3.04	3.03
$\omega \mathrm{B}97\mathrm{X}^a$	11.99	-	-	3.08	-	-
B2PLYP	11.36	16.94	16.96	3.05	3.00	3.01
B2GP-PLYP	11.99	15.95	17.48	3.03	2.99	2.99
ω B2PLYP	13.07	13.20	13.19	2.99	2.99	2.99
ω B2GP-PLYP	13.90	13.90	13.90	2.98	2.98	2.98

	Percentag	ge error in .	D_e	Percentage error in r_e			
Functional	Uncorrected	D3(BJ)	D4	Uncorrected	D3(BJ)	D4	
B3LYP	21.7	55.5	57.3	6.1	2.0	2.0	
PBE38	58.3	14.0	33.3	6.7	4.7	4.04	
BHLYP	40.7	19.3	22.2	5.4	2.0	2.7	
CAM-B3LYP	37.2	11.7	15.5	4.0	2.4	2.0	
$\omega \mathrm{B}97\mathrm{X}^a$	12.2	-	-	3.7	-	-	
B2PLYP	16.8	24.1	24.3	2.7	1.0	1.3	
B2GP-PLYP	12.2	16.8	28.0	2.0	0.7	0.7	
ω B2PLYP	4.2	3.3	3.4	0.7	0.7	0.7	
ω B2GP-PLYP	1.8	1.8	1.8	0.3	0.3	0.3	

^aBased on the observed minimum for the curve shown in Fig. S6, which is the best-possible approximation to the true minimum given the above-mentioned difficulties with this functional. We assessed the pure ω B97X. Its various dispersion-corrected variants all depend on slightly different underlying XC expressions, S1–S6 which is why dispersion-corrected results are not provided.

Table S6: Binding of the naphthalene described by the dissociation energy $(D_e; \text{kcal/mol})$, equilibrium inter-monomer distance $(r_e; \mathring{A})$ and the unsigned percentage errors of each compared to that of the SCS-CC2/CBS(3,4) reference.

		r_e				
Functional	Uncorrected	D3(BJ)	D4	Uncorrected	D3(BJ)	D4
B3LYP	14.69	30.94	31.54	3.37	3.16	3.16
PBE38	15.30	27.67	27.64	3.03	2.96	2.99
BHLYP	11.79	24.90	26.03	3.29	3.16	3.16
CAM-B3LYP	13.32	24.83	25.65	3.24	3.16	3.15
$\omega \mathrm{B}97\mathrm{X}^a$	18.95	-	-	3.24	-	-
B2PLYP	20.58	29.78	29.96	3.19	3.11	3.12
B2GP-PLYP	22.43	29.03	32.17	3.14	3.10	3.10
ω B2PLYP	22.72	22.98	22.99	3.09	3.09	3.09
ω B2GP-PLYP	24.67	24.68	24.68	3.07	3.07	3.07

	Percentag	Percentage error in D_e			Percentage error in r_e		
Functional	Uncorrected	D3(BJ)	D4	Uncorrected	D3(BJ)	D4	
B3LYP	48.1	9.3	11.4	10.9	3.9	3.9	
PBE38	46.0	2.3	2.4	0.3	2.6	1.6	
BHLYP	58.4	12.1	8.1	8.2	3.9	3.9	
CAM-B3LYP	53.0	12.3	9.4	6.6	3.9	3.6	
$\omega \mathrm{B}97\mathrm{X}^a$	33.1	-	-	6.6	-	-	
B2PLYP	27.3	5.2	5.8	4.9	2.3	2.6	
B2GP-PLYP	20.8	2.5	13.6	3.3	2.0	2.0	
ω B2PLYP	19.8	18.8	18.8	1.6	1.6	1.6	
ω B2GP-PLYP	12.9	12.9	12.9	1.0	1.0	1.0	

 $[^]a\mathrm{Based}$ on the observed minimum for the curve shown in Fig. S6, which is the best-possible approximation to the true minimum given the above-mentioned difficulties with this functional. We assessed the pure $\omega\mathrm{B97X}$. Its various dispersion-corrected variants all depend on slightly different underlying XC expressions, $^{\mathrm{S1-S6}}$ which is why dispersion-corrected results are not provided.

Table S7: Binding of the anthracene excimer described by the dissociation energy $(D_e; \text{kcal/mol})$, equilibrium inter-monomer distance $(r_e; \text{Å})$ and the unsigned percentage errors of each compared to that of the SCS-CC2/CBS(3,4) reference.

	r_e					
Functional	Uncorrected	D3(BJ)	D4	Uncorrected	D3(BJ)	D4
B3LYP	9.18	29.59	30.41	3.61	3.30	3.30
PBE38	9.04	25.43	26.40	3.26	3.13	3.17
BHLYP	6.88	23.40	25.17	3.51	3.31	3.31
CAM-B3LYP	8.18	23.50	24.44	3.45	3.32	3.30
$\omega \mathrm{B}97\mathrm{X}^a$	16.01	-	-	3.36	-	-
B2PLYP	17.23	29.24	29.55	3.36	3.25	3.26
B2GP-PLYP	19.82	28.44	33.12	3.31	3.24	3.23
ω B2PLYP	20.10	20.53	20.54	3.25	3.25	3.25
ω B2GP-PLYP	22.70	22.72	22.72	3.23	3.23	3.23

	Percentag	ge error in .	D_e	Percentage error in r_e			
Functional	Uncorrected	D3(BJ)	D4	Uncorrected	D3(BJ)	D4	
B3LYP	67.7	4.2	7.1	13.5	3.8	3.8	
PBE38	68.2	10.5	7.1	2.5	1.6	0.3	
BHLYP	75.8	17.6	11.4	10.4	4.1	4.1	
CAM-B3LYP	71.2	17.2	14.0	8.5	4.4	3.8	
$\omega \mathrm{B}97\mathrm{X}^a$	43.6	-	-	5.7	-	-	
B2PLYP	39.3	3.0	4.1	5.7	2.2	2.5	
B2GP-PLYP	30.2	0.1	16.6	4.1	1.9	1.6	
ω B2PLYP	29.2	27.7	27.7	2.2	2.2	2.2	
ω B2GP-PLYP	20.1	20.0	20.0	1.6	1.6	1.6	

 $[^]a\mathrm{Based}$ on the observed minimum for the curve shown in Fig. S6, which is the best-possible approximation to the true minimum given the above-mentioned difficulties with this functional. We assessed the pure $\omega\mathrm{B97X}$. Its various dispersion-corrected variants all depend on slightly different underlying XC expressions, $^{\mathrm{S1-S6}}$ which is why dispersion-corrected results are not provided.

Table S8: Binding of the pyrene excimer described by the dissociation energy $(D_e; \text{kcal/mol})$, equilibrium inter-monomer distance $(r_e; \text{Å})$ and the unsigned percentage errors of each compared to that of the SCS-CC2/CBS(3,4) reference.

	r_e					
Functional	Uncorrected	D3(BJ)	D4	Uncorrected	D3(BJ)	D4
B3LYP	10.60	33.41	34.37	3.67	3.31	3.31
PBE38	10.24	29.01	30.78	3.30	3.15	3.19
BHLYP	8.22	26.89	29.02	3.54	3.32	3.32
CAM-B3LYP	9.71	27.39	28.41	3.50	3.33	3.32
$\omega \mathrm{B}97\mathrm{X}^a$	17.97	-	-	3.37	-	-
B2PLYP	20.51	34.28	34.60	3.38	3.26	3.27
B2GP-PLYP	23.53	33.44	39.03	3.32	3.25	3.24
ω B2PLYP	23.11	23.63	23.66	3.27	3.27	3.27
ω B2GP-PLYP	26.29	26.32	26.32	3.25	3.25	3.25

	Percentag	ge error in .	D_e	Percentage error in r_e		
Functional	Uncorrected	D3(BJ)	D4	Uncorrected	D3(BJ)	D4
B3LYP	70.8	8.0	5.4	15.0	3.8	3.8
PBE38	71.8	20.1	15.3	3.4	1.3	0.0
BHLYP	77.4	26.0	20.1	11.0	4.1	4.1
CAM-B3LYP	73.3	24.6	21.8	9.7	4.4	4.1
$\omega \mathrm{B}97\mathrm{X}^a$	50.5	-	-	5.6	-	-
B2PLYP	43.6	5.6	4.8	6.0	2.2	2.5
B2GP-PLYP	35.2	7.9	7.4	4.1	1.9	1.6
ω B2PLYP	36.4	35.0	34.9	2.5	2.5	2.5
ω B2GP-PLYP	27.6	27.5	27.5	1.9	1.9	1.9

 $[^]a\mathrm{Based}$ on the observed minimum for the curve shown in Fig. S6, which is the best-possible approximation to the true minimum given the above-mentioned difficulties with this functional. We assessed the pure $\omega\mathrm{B97X}.$ Its various dispersion-corrected variants all depend on slightly different underlying XC expressions, $^{\mathrm{S1-S6}}$ which is why dispersion-corrected results are not provided.

SI.4.4 Mean Absolute Deviations

Table S9: Mean absolute deviations (MADs) for the dissociation energy (D_e ; kcal/mol) and equilibrium distance (r_e ; Å) characterising the description of excimer binding by the method relative to SCS-CC2/CBS(3,4) reference.

	$D_e \text{ MADs}$			$r_e \mathrm{MADs}$			
Functional	Uncorrected	DFT-D3(BJ)	DFT-D4	Uncorrected	DFT-D3(BJ)	DFT-D4	
B3LYP	15.38	3.58	3.75	0.36	0.11	0.11	
PBE38	16.61	3.21	3.20	0.10	0.08	0.05	
BHLYP	17.93	5.12	3.97	0.27	0.11	0.12	
CAM-B3LYP	16.73	4.73	4.17	0.23	0.12	0.11	
$\omega \mathrm{B}97\mathrm{X}^a$	10.45	-	-	0.17	-	-	
B2PLYP	9.26	1.91	1.96	0.15	0.06	0.07	
B2GP-PLYP	7.23	1.48	3.77	0.11	0.05	0.05	
ω B2PLYP	6.92	6.59	6.58	0.06	0.06	0.06	
ω B2GP-PLYP	4.91	4.90	4.90	0.04	0.04	0.04	

^aBased on the observed minima for the curves shown in Fig. S6, which are the best-possible approximations to the true minima given the above-mentioned difficulties with this functional. We assessed the pure ωB97X. Its various dispersion-corrected variants all depend on slightly different underlying XC expressions, S1–S6 which is why dispersion-corrected results are not provided.

References

- (S1) Chai, J.-D.; Head-Gordon, M. J. Chem. Phys. 2008, 128, 084106.
- (S2) Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620.
- (S3) Lin, Y.-S.; Li, G.-D.; Mao, S.-P.; Chai, J.-D. J. Chem. Theory Comput. Chem. 2013, 9, 263–272.
- (S4) Mardirossian, N.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2014, 16, 9904-9924.
- (S5) Najibi, A.; Goerigk, L. J. Chem. Theory Comput. 2018, 14, 5725–5738.
- (S6) Najibi, A.; Goerigk, L. J. Comput. Chem. **2020**, 41, 2562-2572.