Electronic Supplementary Information

Micellization and thermodynamics study of ester functionalized picoline-based ionic liquids surfactants in water

Dong Fu^{a,b,#}, Xiaoru Gao^{c,#}, Jue Wang^a, Haijian Jiang^a, Mingming Zheng^a, Peng Li^a, Bo Huang^a, Kan

Kan^{a*}and Xiaochen Zhang^{a*}

^a Heilongjiang Academy of Sciences, Institute of Advanced Technology, Harbin, P.R., China;

^b College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin,

P.R., China;

^c Harbin Fiber Reinforced Plastic Institute, Harbin, P.R. China.

* Corresponding author: Kan Kan and Xiaochen Zhang

E-mail address: kankan.has@foxmail.com.

E-mail address: 13946165731@163.com.

[#]Dong Fu and Xiaoru Gao contributed equally to this work.

Synthesis of ionic liquids (ILs)

General preparation of fatty acid 2-bromoethyl ester

Briefly, dodecanoic acid was mixed with 1 equivalent of 2-bromoethanol in a 100 mL three-necked flask while a trace amount H_2SO_4 as a catalyst was added, the system was reacted for 3 h at 60 °C. After the reaction, the crude product was washed by 30 mL×3 H_2O and extracted by 50 mL×3 CHCl₃, then the organic phase was dry by Na₂SO₄. CHCl₃ was removed under a high vacuum. The pure dodecanoic acid 2-bromoethyl ester ($C_{12}BrEE$) was recrystallized in fresh methanol at least three times. The syntheses process of myristic acid 2-bromoethyl ester ($C_{14}BrEE$) and decanoic acid 2-bromoethyl ester ($C_{10}BrEE$) were identical. The myristic acid and decanoic acid were used to synthesize, respectively.

General procedure for the synthesis of [C_nEmpy][Br]

3-methylpyridinium was mixed with 1 equivalent of dodecyl 2-bromoethyl ester in 30 mL dry toluene in a 100 mL two-necked flask and refluxed for 6 h under nitrogen atmosphere. After the reaction, toluene was removed under a high vacuum and the pure $[C_{12}Empy][Br]$ was recrystallized in fresh ethyl acetate at least three times.

C₁₀BrEE: yellow liquid. Yield: 93%. ¹H NMR (CDCl₃, 400 MHz), δ: 4.421~4.285 (t, 2H), 3.539~3.509 (t, 2H), 2.378~2.316 (t, 2H), 1.668~1.633 (m, 2H), 1.280 (m,14H), 0.891~0.868 (t, 3H); ¹³C NMR (CDCl₃, 100 MHz), δ: 173.373, 63.595,61.997, 34.121, 31.870, 29.420, 24.913, 22.677, 14.110; FTIR (*v*/cm⁻¹): 2959, 2916, 2844, 1738, 1695, 1455, 1394, 1175, 1099, 722.

C₁₂BrEE: yellow liquid. Yield: 92%. ¹H NMR (CDCl₃, 400 MHz), δ: 4.400~4.369 (t, 2H), 3.525~3.494 (t, 2H), 2.365~2.328 (t, 2H), 1.656~1.621 (m, 2H), 1.262 (m, 18H), 0.898~0.864 (t, 3H); ¹³C NMR (CDCl₃, 100 MHz), δ: 179.601, 173.413, 63.608, 34.123, 31.921, 29.606, 24.916, 22.696, 14.116; FTIR (*ν*/cm⁻¹): 2920, 2852, 1738, 1710, 1462, 1376, 1153, 1107, 712.

C₁₄BrEE: white powder. Yield: 95%. ¹H NMR (CDCl₃, 400 MHz), δ: 4.402~4.371 (t, 2H), 3.526~3.496 (t, 2H), 2.367~2.329 (t, 2H), 1.658~1.605 (m, 2H), 1.262 (m, 22H), 0.901~0.866 (t, 3H); ¹³C NMR (CDCl₃, 100 MHz), δ: 179.662, 173.412, 63.609, 34.134, 31.939, 29.658, 24.918, 22.706, 14.124; FTIR (*ν*/cm⁻¹): 2956, 2912, 2848, 1735, 1692, 1466, 1383, 1171, 1092, 719.

[C₁₀Empy][Br]: pink powder. Yield: 95%. ¹H NMR (CDCl₃, 400 MHz), δ: 9.509 (s, H), 9.347 (d, 1H), 8.331 (d, 1H), 8.038 (t, 1H), 5.371 (s, 2H), 4.639 (s, 2H), 2.642 (s, 3H), 2.278~2.241 (m, 2H),

1.6485 (m, 2H), 1.213 (m, 14H), 0.863 (t, 3H); ¹³C NMR (CDCl₃, 100 MHz), δ: 172.910, 146.323, 145.195, 142.907, 139.510, 127.573, 63.234, 60.205, 33.888, 31.826, 29.383, 29.226, 29.632, 29.035, 24.703, 22.637, 18.731, 14.096; FTIR (*ν*/cm⁻¹): 3017, 2992, 2923, 2841, 1735, 1634, 1502, 1462, 1390, 1146, 1085, 719.

[C₁₂**Empy][Br]:** white powder. Yield: 95%. ¹H NMR (CDCl₃, 400 MHz), δ: 9.498 (s, H), 9.326 (d, 1H), 8.305 (d, 1H), 8.018 (t, 1H), 5.339~5.319 (t, 2H), 4.614~4.590 (t, 2H), 2.619 (s, 3H), 2.248~2.210 (t, 2H), 1.468~1.435 (t, 2H), 1.179 (m, 18H), 0.839~0.807 (t, 3H); ¹³C NMR (CDCl₃, 100 MHz), δ: 172.894, 146.347, 146.299, s145.189, 142.917, 138.481, 127.568, 62.698, 60.169, 33.871, 31.860, 29.563, 29.422, 29.288, 29.227, 29.028, 24.686, 22.640, 18.704, 14.086; FTIR (*ν*/cm⁻¹): 3017, 2992, 2920, 2844, 1728, 1638, 1509, 1466, 1387, 1146, 1082, 726.

[C₁₄**Empy][Br]:** white powder. Yield: 95%. ¹H NMR (CDCl₃, 400 MHz), δ: 9.476 (s, H), 9.317 (d, 1H), 8.300 (d, 1H), 8.017 (t, 1H), 5.343~5.322 (t, 2H), 4.618~4.594 (t, 2H), 2.615 (s, 3H), 2.255~2.210 (t, 2H), 1.478~1.445 (t, 2H), 1.212 (m, 22H), 0.851~0.817 (t, 3H); ¹³C NMR (CDCl₃, 100 MHz), δ: 172.913, 146.263, 145.266, 145.202, 142.938, 139.473, 127.553, 62.698, 60.221, 33.879, 31.890, 29.655, 29.622, 29.586, 29.447, 29.247, 29.134, 29.046, 24.698, 22.659, 18.708, 14.066; FTIR (*v*/cm⁻¹): 3013, 2992, 2912, 2844, 1735, 1634, 1509, 1469, 1387, 1146, 1017, 719.

The purity of the synthesized ionic liquids was estimated by ¹H NMR, and the purity of $[C_n \text{Empy}][Br]$ (*n*=10, 12, 14) were 98.6%, 99.3% and 99.4%, respectively.

Fig. S1. FTIR spectrum of synthesized C_nBrEE and [C_nEmpy][Br]

Fig. S2. (¹H, ¹³C) NMR spectrum of synthesized C_nBrEE

Fig. S3. (¹H, ¹³C) NMR spectrum of synthesized [C_nEmpy][Br]

Fig. S5. DSC curve of synthesized $[C_n \text{Empy}][Br]$. The temperature at which the ionic liquids transform from CR phase to LC phase is the melting point of the ionic liquids (ie T_1), and the temperature at which the ionic liquids transform from LC phase to I phase is the thermal transition temperatures of the ionic liquids (ie T_2).

Table S1Coefficients of polynomials $CMC=A+BT+CT^2$; the temperature $T^*(CMC)$, at the
minimum critical micelle concentration, CMC^*

ILs	А	В	С	CMC^*	T^*
[C ₁₀ Empy][Br]	418.03088	-2.694	0.00458	21.84	294.11
[C ₁₂ Empy][Br]	141.446	-0.9305	0.0016	6.16	290.80
[C ₁₄ Empy][Br]	72.6781	-0.4890	8.4697×10 ⁻⁴	2.10	288.68

Units: *T*(K); B(K⁻¹); C(K⁻²); T^{*}(K); CMC^{*}(mmol·L⁻¹)

Table S2 Coefficients of polynomials $\text{Log } X_{\text{CMC}} = \text{A} + \text{B}T + \text{C}T^2$; $T_0 \text{ at } \Delta H_{mic}^{\ \theta} = 0$; together with the "chemical part" of the micellization process, $\Delta H_c^{\ \theta}$, compensation temperature, T_c and standard heat capacity change upon micelle formation, $\Delta C_{p,mic}^{\ \theta}$, for the investigated systems.

		<i>p</i> , <i>e</i>		<u> </u>						
ILs	А	В	С	T_0	$\Delta C_{p,mic}^{\ \ heta}$	$\Delta H_c^{\ \theta}$	T_c			
[C ₁₀ Empy][Br]	5.64556	-0.04967	8.4507×10-5	292.84	-466.44	-29.13	271.28			
[C ₁₂ Empy][Br]	6.96792	-0.06314	1.0835×10-4	290.67	-638.47	-36.76	287.80			
[C ₁₄ Empy][Br]	10.2092	-0.08915	1.5419×10 ⁻⁴	288.59	-926.00	-41.16	288.16			
H^{+} $T(X) = D(X^{-1}) = C(X^{-2}) = T^{-} T(X) = A H \theta^{-1} H = \frac{1}{2} - A C = \theta^{-} (H K^{-1} - H^{-1})$										

Units: T(K); B(K⁻¹); C(K⁻²); T₀, T_c(K); ΔH_c^{θ} , kJ mol⁻¹, $\Delta C_{p,mic}^{\theta}$ (J·K⁻¹·mol⁻¹).