Supplementary Material

Identification of a novel ene reductase from *Pichia angusta* with potential application in

(*R*)-levodione production

Baoqi Zhang, Jiale Sun, Yanqiu Zheng, Xinlei Mao, Jinping Lin*, Dongzhi Wei

State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East

China University of Science and Technology, Shanghai 200237, People's Republic of China

Authors' email addresses:

zhangbaoqi1992@163.com (B. Zhang), neverendsjl@163.com (J. Sun), 15957156932@163.com (Y.

Zheng), 995698729@qq.com (X. Mao), jplin@ecust.edu.cn (J. Lin), dzhwei@ecust.edu.cn (D. Wei)

*Corresponding author.

jplin@ecust.edu.cn (J. Lin) Tel.: +86 21 64251923; Fax: +86 21 64250068.

Table and figure captions:

Fig. S1 Sequence alignment of PaER with the other nine OYEs. Substrate binding sites and catalytic residue are marked with black triangles.

Fig. S2 HPLC detection of *Pa*ER flavin species.

Fig. S3 (A) Standard curve of size-exclusion chromatography, (B) The size-exclusion chromatography of *Pa*ER.

Fig. S4 SDS-PAGE analysis of engineered *E. coli* cells. M: Molecular weight marker; T: whole cell lysate; S: supernatant; P: precipitate.

Fig. S5 GC-MS spectrum of (*R*)-levodione prepared by *Pa*ER. GC-EI-MS m/z (M+ 154 for $C_9H_{14}O_2$)

139, 111, 95, 83, 69, 56.

Fig. S6 NMR of product (*R*)-levodione prepared by *Pa*ER.

¹H NMR (400 MHz, Chloroform-d) δ 3.01 (dp, J = 13.2, 6.5 Hz, 1H), 2.81 – 2.68 (m, 2H), 2.52 (d, J = 15.4 Hz, 1H), 2.34 (dd, J = 17.7, 13.3 Hz, 1H), 1.29 – 1.10 (m, 8H).

Table S1 List of primers sequences.

Table S2 Comparison of PaER with other OYEs regarding half-lives.

Table S3 Kinetic parameters of PaER.

Table S4 Comparison of different ene-reductases for asymmetric reduction of ketoisophorone

Fig. S1 Sequence alignment of PaER with the other nine OYEs. Substrate binding sites and catalytic

residue	are	marked	with	black	triangles.
					-

Fig. S2 HPLC detection of *Pa*ER flavin species.

Fig. S3 (A) Standard curve of size-exclusion chromatography, (B) The size-exclusion chromatography of *Pa*ER.

Fig. S4 (A) The Ramachandran plot of *Pa*ER model evaluation. (B) The Verify-3D analysis of *Pa*ER model evaluation.

Fig. S5 SDS-PAGE analysis of engineered *E. coli* cells. M: Molecular weight marker; T: whole cell lysate; S: supernatant; P: precipitate.

Fig. S6 GC-MS spectrum of (*R*)-levodione prepared by *Pa*ER. GC-EI-MS m/z (M+ 154 for C₉H₁₄O₂) 139, 111, 95, 83, 69, 56.

Fig. S7 NMR of product (*R*)-levodione prepared by *Pa*ER.

¹H NMR (400 MHz, Chloroform-d) δ 3.01 (dp, J = 13.2, 6.5 Hz, 1H), 2.81 – 2.68 (m, 2H), 2.52 (d, J = 15.4 Hz, 1H), 2.34 (dd, J = 17.7, 13.3 Hz, 1H), 1.29 – 1.10 (m, 8H).

Primer	Sequence $(5' \rightarrow 3')$
PaER-F	TGGACAGCAAATGGGTCGC <u>GGATCC</u> ATGACCCCAAGCACTTCTCT
PaER-R	GGTGCTCGAGTGCGGCCGC <u>AAGCTT</u> CTACGCAAGGGCCTTTGGCT
rbs- GDH-F	AGCCAAAGGCCCTTGCGTAG <u>AAGCTT</u> GAAGGAGATATACCATGGGC
GDH-R	TGGTGCTCGAGTGCGGCCGC <u>AAGCTT</u> TTAACCGCGGCCTGCCTG
MCS1- PaER-F	TTTAAGAAGGAGATATA <u>CCATGG</u> TTATGACCCCAAGCACTTCTCTT
MCS1- PaER-R	TGTCGACCTGCAGGCGCGCC <u>GAGCTC</u> CTACGCAAGGGCCTTTGGCT
MCS2-	GTATAAGAAGGAGATATA <u>CATATG</u> GCAGATCTCATGTATCCGGATTTAAAA
GDH-F	GG
MCS2-	CCGGCCGATATCCAATTGAGATCTTTAACCGCGGCCTGCCT
GDH-R	
GDH-	ATTCCAGGCAGGCCGCGGTGAAGAAGAGGAAAAAAAAAA
ERK-F	
PaER-	CAAGAGAAGTGCTTGGGGTCATGGATCCTTTTTTCTTACGTTTTTC
ERK-R	

Table S1 List of primers sequences.

Enzyme	Species	Temperature (°C)	half-life	Reference
OYERo2	Rhodococcus opacus	32	28 min	1
OYE <i>Ro</i> 2a	Rhodococcus opacus	32	87 min	1
FOYE-1	Ferrovum sp. JA12	50	5 h	2
OYE2p	Saccharomyces cerevisiae	40	11 h	3
<i>Cl</i> ER	Clavispora lusitaniae	40	36 h	4
MgER	Meyerozyma guilliermondii	40	60 h	5
CrOYE3	Chlamydomonas reinhardtii	40	46 h	6
CrOYE1	Chlamydomonas reinhardtii	40	137 h	6
CrOYE2	Chlamydomonas reinhardtii	40	134 h	6
PaER	Pichia angusta	40	89 h	This study

Table S2 Comparison of *Pa*ER with other OYEs regarding half-lives.

Table S3 Kinetic parameters of PaER.					
Substrate		$K_{\rm m}({\rm mM})$	$k_{\text{cat}}(s^{-1})$	$k_{\rm cat}/K_{\rm m}({\rm s}^{-1}~{\rm mM}^{-1})$	
3a	0=	0.33	3.57	10.64	
10a		0.064	2.42	37.66	
12a	CHO	0.038	0.54	14.45	

Catalyst	Source	Concentration	Cofactor	Conversion	ee	Reference
		(mM)		(%)	(%)/config.	
XenA	Pseudomonas putida	5	NADP+/ 0.2 mM	98.9	2.25 (<i>S</i>)	7
PETNR	Enterobacter cloacae st. PB2	5	NADP ⁺ /0.01 mM	>99	57 (<i>R</i>)	8
Gox0502ª	Gluconobacter. oxydans	10	NADP+/ 0.5 mM	>99	>99 (<i>R</i>)	9
SynER	<i>Synechoccocus</i> sp. PCC 7942	10	NADP ⁺ /0.5 mM	93%	97 (<i>R</i>)	10
<i>Ts</i> ER C25D/I67T	Thermus scotoductus SA-01	125	NADP ⁺ /0.41 mM	>99	98 (<i>R</i>)	11
<i>Cl</i> ER	Clavispora lusitaniae	500	NADP+/ 0.5 mM	>99	98 (<i>R</i>)	4
CYE	Candida macedoniensis	658	NADP+/ 0.784 mM	95.4	n.d.	12
<i>Geobacillus</i> ene reductase	Geobacillus sp. 30	1000	NADH/1.0 mM	63.2	89.2 (<i>R</i>)	13
PaER	Pichia angusta	1000	NADP ⁺ /0.2 mM	>99%	>99 (<i>R</i>)	This study

Table S4 Comparison of different ene-reductases for asymmetric reduction of ketoisophorone

REFERENCES

- A. Riedel, M. Mehnert, C. E. Paul, A. H. Westphal, W. J. van Berkel and D. Tischler, Front Microbiol, 2015, 6, 1073.
- A. Scholtissek, S. R. Ullrich, M. Muhling, M. Schlomann, C. E. Paul and D. Tischler, *Applied microbiology and biotechnology*, 2017, 101, 609-619.
- 3. L. Zheng, J. Lin, B. Zhang, Y. Kuang and D. Wei, *Bioresources and Bioprocessing*, 2018, 5, 9.
- 4. Y. Ni, H. L. Yu, G. Q. Lin and J. H. Xu, Enzyme and microbial technology, 2014, 56, 40-45.
- 5. B. Zhang, L. Zheng, J. Lin and D. Wei, *Biotechnology letters*, 2016, 38, 1527-1534.
- S. Böhmer, C. Marx, Á. Gómez-Baraibar, M. M. Nowaczyk, D. Tischler, A. Hemschemeier and T. Happe, *Algal Research*, 2020, 50, 101970.
- 7. Y. Yanto, H. H. Yu, M. Hall and A. S. Bommarius, Chemical communications, 2010, 46, 8809-8811.
- M. Kataoka, A. Kotaka, R. Thiwthong, M. Wada, S. Nakamori and S. Shimizu, *Journal of biotechnology*, 2004, 114, 1-9.
- 9. N. Richter, H. Groger and W. Hummel, Applied microbiology and biotechnology, 2011, 89, 79-89.
- 10. Y. Fu, K. Hoelsch and D. Weuster-Botz, Process Biochemistry, 2012, 47, 1988-1997.
- N. Nett, S. Duewel, L. Schmermund, G. E. Benary, K. Ranaghan, A. Mulholland, D. J. Opperman and S. Hoebenreich, *Molecular Catalysis*, 2021, 502, 111404.
- M. Kataoka, A. Kotaka, R. Thiwthong, M. Wada, S. Nakamori and S. Shimizu, *Journal of biotechnology*, 2004, 114, 1-9.
- N. Tsuji, K. Honda, M. Wada, K. Okano and H. Ohtake, *Applied microbiology and biotechnology*, 2014, 98, 5925-5935.