Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Supplementary Materials

Synthesis of Potent and Selective HDAC6 Inhibitors led to Unexpected Opening of Quinazoline Ring

Davide Moi,^{1,2,‡} Andrea Citarella,^{1,2,‡} Davide Bonanni,¹ Luca Pinzi,¹ Daniele Passarella,² Alessandra Silvani,² Clelia Giannini² and Giulio Rastelli¹*

¹ Department of Life Sciences, University of Modena and Reggio Emilia. Via Campi 103, 41125 Modena, Italy

² Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy

‡ Equally contributing authors

* Corresponding author: giulio.rastelli@unimore.it

Table of contents

	Pag.
Table S1	S1
Table S2	S2-S6
Figure S1-S3: Dose response curves	S7
¹ H, ¹³ C NMR Spectra for all compounds	S8-S19
HPLC-MS for 11a and 18	S20

Table S1: Chemical fragments including the benzohydroxamate, 1,3-benzodioxole and quinazoline substructures, identified among HDAC6 inhibitors. The number of compounds including the fragments and their prevalence ("Actives / Inactives rate") among the active and inactive classes are reported in the table.

Fragment ID	Fragment SMILES	Global Rank	Number of HDAC6 compounds	Number of active compounds	Number of inactive compounds	Actives / Inactives rate	Substructure Class
Fragment 1	O=Cc1ccc(C(=O)NO)cc1	6	42	41	1	41.00	benzohydroxamate
Fragment 2	NCc1ccc(C(=O)NO)cc1	44	402	382	20	19.10	benzohydroxamate
Fragment 3	Cc1ccc(C(=O)NO)cc1	97	508	470	38	12.37	benzohydroxamate
Fragment 4	CNc1ccc(C(=O)NO)cc1	145	93	83	10	8.30	benzohydroxamate
Fragment 5	O=C(NO)c1ccccc1	167	694	611	83	7.36	benzohydroxamate
Fragment 6	Nc1ccc(C(=O)NO)cc1	173	99	87	12	7.25	benzohydroxamate
Fragment 7	O=C(NO)c1ccc(Cl)cc1	177	8	7	1	7.00	benzohydroxamate
Fragment 8	Nc1cc(C(=O)NO)ccc1Cl	183	8	7	1	7.00	benzohydroxamate
Fragment 9	O=Cc1cccc(C(=O)NO)c1	213	7	6	1	6.00	benzohydroxamate
Fragment 10	CCc1ccc(C(=O)NO)cc1	287	92	76	16	4.75	benzohydroxamate
Fragment 11	NCc1cccc(C(=O)NO)c1	421	23	18	5	3.60	benzohydroxamate
Fragment 12	c1ccc2c(c1)OCO2	230	33	28	5	5.60	1,3 benzodixole
Fragment 13	CCc1ccc2c(c1)OCO2	235	26	22	4	5.50	1,3 benzodixole
Fragment 14	Cc1ccc2c(c1)OCO2	238	32	27	5	5.40	1,3 benzodixole
Fragment 15	Cc1ncc2cccc2n1	141	70	63	7	9.00	quinazoline
Fragment 16	c1ccc2ncncc2c1	491	151	115	36	3.19	quinazoline
Fragment 17	Cc1ncnc2ccccc12	509	4	3	1	3.00	quinazoline

Table S2: Top-ranking similarities obtained for the derivatives 11a and 11b with respect to the HDAC6 ligands reported in ChEMBL, according to the MACCS and ECFP4 fingerprints. The similarity degree between the ligands is reported as a mean of the Tanimoto index. Only similarity values above commonly accepted thresholds are reported. The document reference ID of the ligands in ChEMBL are also reported.

Compound ID	ChEMBL ID	MACCSfp ECFP4fp similarity		Document ChEMRI II
Compound ID		similarity score	score	Document Chewibe ID
11a	CHEMBL3655929	0.844	0.5	CHEMBL3639071
11a	CHEMBL3655997	0.831	0.459	CHEMBL3639071
11a	CHEMBL3601777	0.677	0.639	CHEMBL3600352
11a	CHEMBL4073021	0.633	0.606	CHEMBL4024792
11a	CHEMBL3314863	0.683	0.6	CHEMBL3351281
11a	CHEMBL3601776	0.734	0.564	CHEMBL3600352
11a	CHEMBL3918660	0.646	0.556	CHEMBL3886619
11a	CHEMBL3798183	0.645	0.556	CHEMBL3797085
11a	CHEMBL3893799	0.6	0.556	CHEMBL3886619
11a	CHEMBL3655914	0.656	0.545	CHEMBL3639071
11a	CHEMBL3652237	0.609	0.545	CHEMBL3639071
11a	CHEMBL3960564	0.612	0.541	CHEMBL3886619
11a	CHEMBL4466930	0.588	0.541	CHEMBL4385610
11a	CHEMBL4210907	0.631	0.537	CHEMBL4196108
11a	CHEMBL4073165	0.677	0.529	CHEMBL4024792
11a	CHEMBL4061807	0.661	0.529	CHEMBL4024792
11a	CHEMBL4079874	0.661	0.529	CHEMBL4024792
11a	CHEMBL4068310	0.645	0.529	CHEMBL4024792
11a	CHEMBL3909186	0.683	0.528	CHEMBL3886619
11a	CHEMBL3909854	0.683	0.528	CHEMBL3886619
11a	CHEMBL3927508	0.635	0.528	CHEMBL3886619
11a	CHEMBL3958794	0.603	0.528	CHEMBL4385610
11a	CHEMBL3979548	0.594	0.528	CHEMBL3886619
11a	CHEMBL3971436	0.582	0.528	CHEMBL4385610
11a	CHEMBL3798027	0.538	0.528	CHEMBL3797085
11a	CHEMBL3799183	0.538	0.528	CHEMBL3797085
11a	CHEMBL4160296	0.492	0.528	CHEMBL4130365
11a	CHEMBL4168213	0.422	0.528	CHEMBL4130365
11a	CHEMBL4080014	0.618	0.526	CHEMBL4033665
11a	CHEMBL2170177	0.615	0.526	CHEMBL4616727
11a	CHEMBL4225495	0.758	0.525	CHEMBL4219109
11a	CHEMBL3652239	0.645	0.515	CHEMBL3639071
11a	CHEMBL3655907	0.625	0.515	CHEMBL3639071
11a	CHEMBL3652226	0.615	0.515	CHEMBL3639071
11a	CHEMBL3652238	0.609	0.515	CHEMBL3639071
11a	CHEMBL4064437	0.661	0.514	CHEMBL4024792
11a	CHEMBL2170166	0.603	0.514	CHEMBL3639018
11a	CHEMBL3948680	0.594	0.514	CHEMBL3886619
11a	CHEMBL4280808	0.662	0.513	CHEMBL4261629
11a	CHEMBL4282039	0.603	0.513	CHEMBL4261629
11a	CHEMBL4537561	0.562	0.513	CHEMBL4422610
11a	CHEMBL4100664	0.556	0.513	CHEMBL3994606

11a	CHEMBL4069287	0.532	0.513	CHEMBL4033665
11a	CHEMBL4206021	0.627	0.512	CHEMBL4196108
11a	CHEMBL2425970	0.614	0.512	CHEMBL2424579
11a	CHEMBL2425971	0.614	0.512	CHEMBL2424579
11a	CHEMBL3217996	0.565	0.512	CHEMBL3217617
11a	CHEMBL3217999	0.565	0.512	CHEMBL3217617
11a	CHEMBL3217995	0.547	0.512	CHEMBL3217617
11a	CHEMBL3217998	0.547	0.512	CHEMBL3217617
11a	CHEMBL4228987	0.758	0.5	CHEMBL4219109
11a	CHEMBL1630117	0.754	0.5	CHEMBL1629443
11a	CHEMBL4529251	0.719	0.5	CHEMBL4414648
11a	CHEMBL4535144	0.719	0.5	CHEMBL4414648
11a	CHEMBL1630118	0.7	0.5	CHEMBL1629443
11a	CHEMBL4551484	0.688	0.5	CHEMBL4414648
11a	CHEMBL3314862	0.683	0.5	CHEMBL3351281
11a	CHEMBL4464235	0.672	0.5	CHEMBL4414648
11a	CHEMBL3652243	0.662	0.5	CHEMBL3639071
11a	CHEMBL4093718	0.661	0.5	CHEMBL4024792
11a	CHEMBL4556111	0.657	0.5	CHEMBL4354804
11a	CHEMBL3218000	0.651	0.5	CHEMBL3217617
11a	CHEMBL4531802	0.643	0.5	CHEMBL4385610
11a	CHEMBL3652225	0.639	0.5	CHEMBL3639071
11a	CHEMBL3217993	0.631	0.5	CHEMBL3217617
11a	CHEMBL4277089	0.631	0.5	CHEMBL4261629
11a	CHEMBL3926575	0.627	0.5	CHEMBL3886619
11a	CHEMBL3652231	0.615	0.5	CHEMBL3639071
11a	CHEMBL3652240	0.615	0.5	CHEMBL3639071
11a	CHEMBL2425952	0.614	0.5	CHEMBL2424579
11a	CHEMBL3952983	0.611	0.5	CHEMBL3886619
11a	CHEMBL4214369	0.609	0.5	CHEMBL4196108
11a	CHEMBL4475240	0.606	0.5	CHEMBL4385610
11a	CHEMBL4209463	0.603	0.5	CHEMBL4196108
11a	CHEMBL4560818	0.594	0.5	CHEMBL4414648
11a	CHEMBL2018304	0.592	0.5	CHEMBL2016572
11a	CHEMBL2018450	0.592	0.5	CHEMBL2016572
11a	CHEMBL4206537	0.591	0.5	CHEMBL4196108
11a	CHEMBL4438279	0.586	0.5	CHEMBL4385610
11a	CHEMBL4215954	0.576	0.5	CHEMBL4196108
11a	CHEMBL3898702	0.567	0.5	CHEMBL3886619
11a	CHEMBL4468860	0.565	0.5	CHEMBL4385610
11a	CHEMBL482094	0.448	0.5	CHEMBL1155020
11a	CHEMBL4441436	0.643	0.488	CHEMBL4330076
11a	CHEMBL4541796	0.636	0.488	CHEMBL4385610
11a	CHEMBL4218266	0.631	0.488	CHEMBL4196108
11a	CHEMBL4517827	0.629	0.488	CHEMBL4330076
11a	CHEMBL4464975	0.616	0.488	CHEMBL4330076
11a	CHEMBL4565933	0.616	0.488	CHEMBL4330076
11a	CHEMBL4442777	0.603	0.488	CHEMBL4330076
11a	CHEMBL4470654	0.603	0.488	CHEMBL4330076

11a	CHEMBL4579683	0.603	0.488	CHEMBL4330076
11a	CHEMBL3217994	0.569	0.488	CHEMBL3217617
11a	CHEMBL3217997	0.569	0.488	CHEMBL3217617
11a	CHEMBL3314869	0.625	0.487	CHEMBL3351281
11a	CHEMBL4470067	0.623	0.487	CHEMBL4385610
11a	CHEMBL4445881	0.58	0.487	CHEMBL4385610
11a	CHEMBL4066920	0.565	0.487	CHEMBL4385610
11a	CHEMBL4563723	0.725	0.486	CHEMBL4346670
11a	CHEMBL3655910	0.636	0.486	CHEMBL3639071
11a	CHEMBL3652242	0.625	0.486	CHEMBL3639071
11b	CHEMBL3655929	0.844	0.515	CHEMBL3639071
11b	CHEMBL3655997	0.831	0.472	CHEMBL3639071
11b	CHEMBL4225495	0.758	0.538	CHEMBL4219109
11b	CHEMBL4228987	0.758	0.513	CHEMBL4219109
11b	CHEMBL1630117	0.754	0.478	CHEMBL1629443
11b	CHEMBL3601776	0.734	0.538	CHEMBL3600352
11b	CHEMBL4563723	0.725	0.5	CHEMBL4346670
11b	CHEMBL4529251	0.719	0.475	CHEMBL4414648
11b	CHEMBL4535144	0.719	0.475	CHEMBL4414648
11b	CHEMBL1630118	0.7	0.478	CHEMBL1629443
11b	CHEMBL3314863	0.683	0.571	CHEMBL3351281
11b	CHEMBL3909186	0.683	0.5	CHEMBL3886619
11b	CHEMBL3909854	0.683	0.5	CHEMBL3886619
11b	CHEMBL3314862	0.683	0.475	CHEMBL3351281
11b	CHEMBL3601777	0.677	0.611	CHEMBL3600352
11b	CHEMBL4073165	0.677	0.5	CHEMBL4024792
11b	CHEMBL4439302	0.672	0.485	CHEMBL4414648
11b	CHEMBL3652229	0.667	0.485	CHEMBL3639071
11b	CHEMBL4280808	0.662	0.526	CHEMBL4261629
11b	CHEMBL3652243	0.662	0.515	CHEMBL3639071
11b	CHEMBL4061807	0.661	0.5	CHEMBL4024792
11b	CHEMBL4079874	0.661	0.5	CHEMBL4024792
11b	CHEMBL4064437	0.661	0.486	CHEMBL4024792
11b	CHEMBL4556111	0.657	0.474	CHEMBL4354804
11b	CHEMBL3655914	0.656	0.515	CHEMBL3639071
11b	CHEMBL3652228	0.656	0.5	CHEMBL3639071
11b	CHEMBL3218000	0.651	0.476	CHEMBL3217617
11b	CHEMBL3918660	0.646	0.528	CHEMBL3886619
11b	CHEMBL3652239	0.645	0.531	CHEMBL3639071
11b	CHEMBL3798183	0.645	0.528	CHEMBL3797085
11b	CHEMBL4068310	0.645	0.5	CHEMBL4024792
11b	CHEMBL4531802	0.643	0.474	CHEMBL4385610
11b	CHEMBL3655910	0.636	0.5	CHEMBL3639071
11b	CHEMBL3927508	0.635	0.5	CHEMBL3886619
11b	CHEMBL4073021	0.633	0.576	CHEMBL4024792
11b	CHEMBL4210907	0.631	0.512	CHEMBL4196108
11b	CHEMBL4218266	0.631	0.5	CHEMBL4196108
11b	CHEMBL3217993	0.631	0.475	CHEMBL3217617
11b	CHEMBL4277089	0.631	0.474	CHEMBL4261629

11b	CHEMBL3970950	0.629	0.485	CHEMBL3886619
11b	CHEMBL4206021	0.627	0.525	CHEMBL4196108
11b	CHEMBL3926575	0.627	0.474	CHEMBL3886619
11b	CHEMBL3655907	0.625	0.531	CHEMBL3639071
11b	CHEMBL3655909	0.625	0.486	CHEMBL3639071
11b	CHEMBL4080014	0.618	0.5	CHEMBL4033665
11b	CHEMBL4288702	0.618	0.475	CHEMBL4261629
11b	CHEMBL2170177	0.615	0.541	CHEMBL4616727
11b	CHEMBL3652226	0.615	0.531	CHEMBL3639071
11b	CHEMBL3652234	0.615	0.5	CHEMBL3639071
11b	CHEMBL3652236	0.615	0.5	CHEMBL3639071
11b	CHEMBL3655908	0.615	0.486	CHEMBL3639071
11b	CHEMBL2425970	0.614	0.488	CHEMBL2424579
11b	CHEMBL2425971	0.614	0.488	CHEMBL2424579
11b	CHEMBL2425952	0.614	0.476	CHEMBL2424579
11b	CHEMBL3960564	0.612	0.514	CHEMBL3886619
11b	CHEMBL4066975	0.612	0.475	CHEMBL4041521
11b	CHEMBL3952983	0.611	0.475	CHEMBL3886619
11b	CHEMBL3652238	0.609	0.531	CHEMBL3639071
11b	CHEMBL3652237	0.609	0.515	CHEMBL3639071
11b	CHEMBL4214369	0.609	0.512	CHEMBL4196108
11b	CHEMBL3652227	0.609	0.5	CHEMBL3639071
11b	CHEMBL3652230	0.609	0.5	CHEMBL3639071
11b	CHEMBL4475240	0.606	0.474	CHEMBL4385610
11b	CHEMBL4282039	0.603	0.526	CHEMBL4261629
11b	CHEMBL4209463	0.603	0.513	CHEMBL4196108
11b	CHEMBL3958794	0.603	0.5	CHEMBL4385610
11b	CHEMBL2170166	0.603	0.486	CHEMBL3639018
11b	CHEMBL3893799	0.6	0.528	CHEMBL3886619
11b	CHEMBL4093691	0.6	0.476	CHEMBL4041521
11b	CHEMBL4560818	0.594	0.515	CHEMBL4414648
11b	CHEMBL3979548	0.594	0.5	CHEMBL3886619
11b	CHEMBL3948680	0.594	0.486	CHEMBL3886619
11b	CHEMBL2018304	0.592	0.474	CHEMBL2016572
11b	CHEMBL2018450	0.592	0.474	CHEMBL2016572
11b	CHEMBL4206537	0.591	0.513	CHEMBL4196108
11b	CHEMBL4466930	0.588	0.514	CHEMBL4385610
11b	CHEMBL4438279	0.586	0.474	CHEMBL4385610
11b	CHEMBL2018295	0.583	0.488	CHEMBL2016572
11b	CHEMBL2018296	0.583	0.488	CHEMBL2016572
11b	CHEMBL39/1436	0.582	0.5	CHEMBL4385610
11b	CHEMBL2018300	0.581	0.488	CHEMBL2016572
11b	CHEMBL2018301	0.581	0.488	CHEMBL2016572
11b	CHEMBL4215954	0.576	0.513	CHEMBL4196108
110	CHEMBL4103801	0.574	0.474	CHEMBL4033665
110		0.565	0.488	
110		0.565	0.488	
11b	CHEMBL4468860	0.565	0.474	CHEMBL4385610
11b	CHEMBL4537561	0.562	0.526	CHEMBL4422610

11b	CHEMBL4100664	0.556	0.487	CHEMBL3994606
11b	CHEMBL3976023	0.556	0.485	CHEMBL3886619
11b	CHEMBL3217995	0.547	0.488	CHEMBL3217617
11b	CHEMBL3217998	0.547	0.488	CHEMBL3217617
11b	CHEMBL3798027	0.538	0.5	CHEMBL3797085
11b	CHEMBL3799183	0.538	0.5	CHEMBL3797085
11b	CHEMBL4069287	0.532	0.487	CHEMBL4033665
11b	CHEMBL4531108	0.531	0.488	CHEMBL4422610
11b	CHEMBL4283105	0.525	0.488	CHEMBL4422610
11b	CHEMBL4160296	0.492	0.5	CHEMBL4130365
11b	CHEMBL482094	0.448	0.474	CHEMBL1155020
11b	CHEMBL4168213	0.422	0.5	CHEMBL4130365

Figure S1. Dose response curves of **11a** and **18** tested against **HDAC6**. All compounds were tested in singlet 10-dose IC_{50} mode with 3-fold serial dilution starting at 100 μ M. HDAC reference compound Trichostatin A (TSA) was tested in a 10-dose IC_{50} with 3-fold serial dilution starting at 1 μ M. IC_{50} values were calculated using the GraphPad Prism4 program based on a sigmoidal dose-response equation.

Figure S2. Dose response curves of **11a** and **18** tested against **HDAC1**. All compounds were tested in singlet 10-dose IC₅₀ mode with 3-fold serial dilution starting at 100 μ M. HDAC reference compound Trichostatin A (TSA) was tested in a 10-dose IC₅₀ with 3-fold serial dilution starting at 1 μ M. IC₅₀ values were calculated using the GraphPad Prism4 program based on a sigmoidal dose-response equation.

Figure S3. Dose response curves of **11a** and **18** tested against **HDAC8**. All compounds were tested in singlet 10-dose IC_{50} mode with 3-fold serial dilution starting at 100 μ M. HDAC reference compound Trichostatin A (TSA) was tested in a 10-dose IC_{50} with 3-fold serial dilution starting at 1 μ M. IC_{50} values were calculated using the GraphPad Prism4 program based on a sigmoidal dose-response equation.

¹H, ¹³C NMR Spectra for all compounds

S15

¹H NMR, 400 MHz, CDCl₃

---- 5.96 --- 4.39 --- 4.26 7.97 7.90 7.88 7.81 7.81 7.81 7.81 7.81 7.83 6.97 6.97 NH₂ Ĥ HO NH ö 0⁄ ¹H NMR, 400 MHz, DMSO-*d*₆ 0.86-I 2.02-I 2.02-1 2.01H 2.00H 2.19 6.5 6.0 5.5 f1 (ppm) 7.0 5.0 4.5 4.0 3.5 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 3.0 2.5 2.0 1.5 1.0 0.5 $\begin{array}{c} \begin{array}{c} 150.76 \\ 148.09 \\ 146.01 \\ 146.01 \\ 146.43 \\ 146.43 \\ 146.43 \\ 140.87 \\ 140.87 \\ 129.81 \\ 129.81 \\ 129.81 \\ 128.57 \\ 128.57 \\ 122.76 \end{array}$ ~ 110.25 ~ 108.82 - 116.06 n a fan de ster fan de ster ander ster ander ster ander an beer ander an an an an an ander ander an ander an a NH₂ N // N H HO ŅΗ ö 0⁄ $^{13}\mathrm{C}$ NMR, 100 MHz, DMSO- d_6 110 100 90 f1 (ppm) . 120 200 190 160 150 140 130 80 70 50 40 30 20 10 0 180 170 60

HPLC-MS for 11a and 18

