Electronic Supplementary Information for

Light-Driven Oxidation of CH₄ to C₁ Chemicals Catalysed by an Organometallic Ru Complex with O₂

Tatsuya Nakano, Tsukasa Abe, Takahiro Matsumoto, * Kento Kimura, Genta Nakamura, Shinya Hayami, Yoshihito Shiota, * Kazunari Yoshizawa* and Seiji Ogo*

*Corresponding author. E-mail: matsumoto.takahiro.236@m.kyushu-u.ac.jp

Table of Contents

Experimental Section	page S1
Table S1	page S5
Fig. S1	page S6
Fig. S2	page S7
Fig. S3	page S8
Fig. S4	page S9
Fig. S5	page S10
Fig. S6	page S11
Fig. S7	page S12
Fig. S8	page S13
Fig. S9	page S14
Fig. S10	page S15
References	page S16

Experimental Section

Materials and Methods. All experiments were carried out under a N₂ atmosphere by using standard Schlenk techniques and a glovebox. CH₄ (99.9999%) was purchased from OSAKA GAS LIQUID Co., Ltd. C₂H₆ (>99.9%) and O₂ gases (99.9%) were purchased from Sumitomo Seika Chemical Co., Ltd. D₂O (99.9%) was purchased from Sigma-Aldrich. ¹⁸O₂ (98 atm%) was purchased from SI Science Co., Ltd. H₂¹⁸O (98 atm%) was purchased from SI Science Co., Ltd. H₂¹⁸O (98 atm%) was purchased from Taiyo Nippon Sanso Co. H₂O was purchased from Hayashi Pure Chemical Ind., Ltd. A ruthenium complex [Ru^{II}(η^5 -C₅Me₅)(CH₃CN)₃](NO₃) was prepared by the methods described in the literature.¹

¹H NMR spectra were recorded on a JEOL JNM-AL400 spectrometer. ¹H NMR experiments in D_2O were measured at 25 °C using 3-(trimethylsilyl)-propionic-2,2,3,3- d_4 acid sodium salt (TSP) as an internal standard. ESI-MS data were obtained on a JEOL JMS-T100LC AccuTOF. UV-vis spectra were recorded on an Agilent Technologies Cary 8454 at room temperature (light path length: 0.10 cm). GC-MS data were recorded on a SHIMADZU GCMS-QP 2010. The magnetic susceptibilities were measured with a SQUID magnetometer (Quantum Design MPMS-5S). UV and visible light irradiation were carried out using Asahi Spectra MAX 303. Light power was measured by a Newport 843-R power meter. High pressure device with sapphire window transmitting UV light was made by Syn Corporation Ltd.

[Ru^{II}(η^5 -C₅Me₅)(H₂O)₃](NO₃) {[1](NO₃)}. [Ru^{II}(η^5 -C₅Me₅)(CH₃CN)₃](NO₃) was dissolved in H₂O, resulting in replacement of the CH₃CN ligands with H₂O to form a Ru aqua complex, [Ru^{II}(η^5 -C₅Me₅)(H₂O)₃](NO₃) {[1](NO₃)}, which was confirmed by ¹H NMR spectroscopy (Fig. S10). ¹H NMR (400 MHz, in D₂O): δ 1.62 (s, 15H, H of η^5 -C₅Me₅).

[Ru₂^{IV}(η^5 -C₅Me₅)₂(μ -O)₂](NO₃)₂ {[2](NO₃)₂}. O₂ was bubbled through a H₂O solution (30 mL) of [1](NO₃) (381 µmol) at 0–5 °C for 30 min to form [2](NO₃)₂. The pH of the resulting solution was adjusted to 7.2 by addition of one equivalent of NaOH (0.10 M NaOH aqueous solution, 1.88 mL, 188 µmol) to 2 because this complex is stable at neutral pH. Then the solvent was removed under reduced pressure and a brown powder was obtained (126 mg, 188 µmol, yield: 99%). ESI-MS (in H₂O): m/z 521.9 {[2 + OH]⁺, relative intensity (I) = 100% in the range of m/z 200–2000}. Anal. Calcd for C₂₀H₃₀N₂O₈Ru₂·NaOH·H₂O: C, 34.99; H, 4.84; N, 4.08. Found: C, 34.98; H, 4.50; N,

4.43. SQUID: diamagnetic.

Isotope Labelling Experiment with ¹⁶O₂ in H₂¹⁸O. ¹⁶O₂ was bubbled through a H₂¹⁸O solution (500 µL) of [1](NO₃) (2.4 µmol) at 0–5 °C to form [Ru₂^{IV}(η^{5} -C₅Me₅)₂(µ-¹⁸O)₂](NO₃)₂ {[¹⁸O-labeled **2**](NO₃)₂}. ESI-MS (in H₂¹⁸O): *m/z* 527.9 ([¹⁸O-labeled **2** + ¹⁸OH]⁺, *I* = 100% in the range of *m/z* 200–2000). This result indicates that oxido ligands of **2** can be exchanged for external H₂¹⁸O.

Isotope Labelling Experiment with ¹⁸O₂ in H₂¹⁶O. ¹⁸O₂ was bubbled through a H₂O solution (500 µL) of [1](NO₃) (2.4 µmol) at 0–5 °C to form $[Ru_2^{IV}(\eta^5-C_5Me_5)_2(\mu-O)_2](NO_3)_2$ {[2](NO₃)₂}. ESI-MS (in H₂O): *m/z* 521.9 ([2 + OH]⁺, *I* = 100% in the range of *m/z* 200–2000). This result indicates that oxido ligands of ¹⁸O-labeled 2 can be exchanged for external H₂O.

Catalytic Oxidation of CH₄ by O₂ with Complex 2 in H₂O under UV Light Irradiation. A H₂O solution (2.0 mL) of [2](NO₃)₂ (1.0 mM) under CH₄ (4 MPa) and O₂ (2 MPa) atmospheres was irradiated by UV light (250-385 nm, 15 mW/cm²) for 5 h. After the reaction, 1.0 mL of the resulting solution was passed through a silica gel column (300 mg) to remove the Ru complex(es). The metal-free aqueous solution was adjusted to 2.0 mL by addition of H₂O, then analysed by GC-MS. The amounts of CH₃OH and HCHO were determined by calibration curves. The turnover numbers (TONs) of CH₃OH and HCHO were estimated as follows: (mol of CH₃OH)/(mol of 2) for CH₃OH and (mol of HCHO)×2/(mol of 2) for HCHO. The TONs of CH₃OH and HCHO were determined as 1.1 and 3.0, respectively. Thus, the total TON was calculated as 4.1. No HCOOH was observed by GC-MS whose limit of detection was less than 0.02 mM, corresponding to a TON of 0.06. The yields of CH₃OH and HCHO based on CH₄ were determined to be 0.12 and 0.17%, respectively. After more than 5 h irradiation of UV light, complex 2 was decomposed, which was confirmed by ESI-MS (Fig. S8). Control experiments were conducted without 2, UV light (250–385 nm), CH₄, or O₂, showing no product formation. When visible light (385-740 nm, 15 mW/cm²) was used instead of UV light, no reaction occurred.

Isotope Labelling Experiment for Catalytic Oxidation of CH₄ by O₂ with Complex 2 in H₂¹⁸O under UV Light Irradiation. A H₂¹⁸O solution (300 μ L) of [2](NO₃)₂ (1.0 mM) under CH₄ (4 MPa) and ¹⁶O₂ (2 MPa) atmospheres was irradiated by UV light (250–385 nm) for 5 h. After the reaction, the resulting solution was passed through a silica gel column (60 mg) to remove the Ru complex(es), and the metal-free aqueous solution was analysed by GC-MS, showing $CH_3^{16}OH$ formation without $CH_3^{18}OH$.

Catalytic Oxidation of CH₃OH by O₂ with Complex 2 in H₂O under UV Light Irradiation. A H₂O solution (2.0 mL) of [2](NO₃)₂ (1.0 mM) and CH₃OH (2.0 mM) was irradiated by UV light (250–385 nm, 15 mW/cm²) for 5 h. After the reaction, 1.0 mL of the resulting solution was passed through a silica gel column (300 mg) to remove the Ru complex(es). The metal-free aqueous solution was adjusted to 2.0 mL by addition of H₂O, then analysed by GC-MS. The amounts of CH₃OH and HCHO were determined by calibration curves. The TON of HCHO was determined as 1.1 and it was confirmed that the unreacted CH₃OH remained as is. No HCOOH was observed by GC-MS whose limit of detection was less than 0.02 mM, corresponding to a TON of 0.04. Control experiments were conducted without **2**, UV light (250–385 nm), CH₃OH, or O₂, showing no product formation. When visible light (385–740 nm, 15 mW/cm²) was used instead of UV light, no reaction occurred.

Catalytic Oxidation of C_2H_6 by O_2 with Complex 2 in H_2O under UV Light Irradiation. A H₂O solution (2.0 mL) of [2](NO₃)₂ (1.0 mM) under C₂H₆ (2 MPa) and O₂ (1 MPa) atmospheres was irradiated by UV light (250–385 nm, 15 mW/cm²) for 5 h. After the reaction, 1.0 mL of the resulting solution was passed through a silica gel column (300 mg) to remove the Ru complex(es). The metal-free aqueous solution was adjusted to 2.0 mL by addition of H₂O, then analysed by GC-MS. The amounts of C₂H₅OH and CH₃CHO were determined by calibration curves. The TONs of C₂H₅OH and CH₃CHO were estimated as follows: (mol of C₂H₅OH)/(mol of **2**) for C₂H₅OH and (mol of CH₃CHO)×2/(mol of **2**) for CH₃CHO. The TONs of C₂H₅OH and CH₃CHO were determined as 0.31 and 0.46, respectively. Thus, the total TON was calculated as 0.77. A trace amount of CH₃COOH was observed. Control experiments were conducted without **2**, UV light (250–385 nm), CH₄, or O₂, showing no product formation. When visible light (385–740 nm, 15 mW/cm²) was used instead of UV light, no reaction occurred. Because the maximum pressure of C₂H₆ is 2 MPa in technical aspects, C₂H₆ oxidation was not conducted at the same pressure as CH₄ oxidation (4 MPa).

Computational Method. All full-optimized structures were obtained by using the UB3LYP functional^{2,3} as implemented in the Gaussian 16 packages.⁴ The SDD basis set⁵

was used for the Ru atom, and the D95** basis set⁶ was used for the C, O, and H atoms. By calculating the analytical harmonic vibration frequencies, we confirmed that the obtained local minima and transition states have none and one imaginary frequency, respectively. The contribution of zero-point energy corrections and the Grimme-D3 dispersion energy corrections⁷ were included to predict reliable energetics. To obtain UV spectra and excited states, TD-DFT⁸ calculations were carried out.

excited triplet (T ₂₇)	$\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}$	$\frac{1}{CH_3}^{2+}$	$\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}$
Ru1	0.63	0.70	0.91
Ru2	0.56	0.13	-0.07
01	0.23	0.35	0.23
02	0.24	0.32	0.06
С	0.00	0.52	1.00
ground singlet (S ₀)	$- \underbrace{\downarrow}_{\text{Ru1}}^{\text{O1}} \underbrace{\downarrow}_{\text{Ru2}}^{\text{O1}} \underbrace{\downarrow}_{\text{CH}_3}^{\text{O1}}$	H	-Ru1 H CH ₃
	¹ R	¹ TS	¹ P
Ru1	-0.79	-0.57	-0.68
Ru2	0.77	-0.07	-0.07
01	0.01	-0.28	-0.30
02	0.03	0.25	0.03
С	0.00	0.61	0.94

Table S1 Calculated Mulliken spin densities for the H atom abstraction of CH_4 in the excited triplet state (T_{27}) and the ground singlet state (S_0).

Fig. S1 Energy profiles for the formation of the $bis(\mu-oxido)Ru_2^{IV}$ complex 2 starting from the Ru^{II} triaqua complex 1 in the ground states in vacuum and water using the polarizable continuous model (PCM). The relative energies calculated from the dissociation limit of the bimolecular 1 and O₂ are given in units of kcal/mol.

Fig. S2 (a) A positive-ion ESI mass spectrum of 2 in H₂O. (b) A signal at m/z 521.9 for $[2 + OH]^+$. (c) A calculated isotopic distribution for $[2 + OH]^+$. (d) A positive-ion ESI mass spectrum of ¹⁸O-labeled 2 in H₂¹⁸O, which is obtained from the reaction of 1 with O₂ in H₂¹⁸O. (e) A positive-ion ESI mass spectrum of 2 in H₂O, which is obtained from the reaction of 1 with ¹⁸O₂ in H₂O.

Fig. S3 Exchange of $H_2^{18}O$ with oxido ligands in a bis(μ -oxido) Ru^{IV}_2 complex, and *vice versa*.

Fig. S4 UV-vis spectra of (a) $[Ru^{II}(\eta^5-C_5Me_5)(H_2O)_3]^+$ (1) in H₂O (1.0 mM) (black line) under a N₂ atmosphere and (b) $[Ru_2^{IV}(\eta^5-C_5Me_5)_2(\mu-O)_2]^{2+}$ (2) in H₂O (0.50 mM) (red line) under an O₂ atmosphere.

Fig. S5 Computed UV-vis spectra of (a) complex **1** and (b) complex **2** with electrondensity difference pictures. Orange: electron-density decrease; purple: electron-density increase. As a result of the charge transfer, the electron density in the orange region is decreased while that in the purple region is increased. Absorptions shown in the calculated spectra as the circle, triangle, and rectangle were assigned to respective transitions depicted as orbital distributions above. MLCT: metal-to-ligand chargetransfer. LMCT: ligand-to-metal charge-transfer. MMCT: metal-to-metal charge transfer.

Fig. S6 GC-MS data of CH₃OH and HCHO obtained from the photo-induced oxidation of CH₄ by $[Ru_2^{IV}(\eta^5-C_5Me_5)_2(\mu-O)_2]^{2+}$ (**2**) in H₂O. GC-MS analysis for (a) *m/z* 29 derived from HCHO and CH₃OH and (b) *m/z* 31 derived from CH₃OH.

Fig. S7 Energy profile for the reaction of the (μ -hydroxido)(μ -oxido)Ru₂^{III,IV} complex **4** and methyl radical (CH₃·) in the triplet state. The relative energies calculated from the complex ³P are given in units of kcal/mol.

Fig. S8 Positive-ion ESI mass spectra obtained from the reaction of $[Ru_2^{IV}(\eta^5-C_5Me_5)_2(\mu-O)_2]^{2+}$ (2) with CH₄ and O₂ in H₂O under light irradiation for (a) 0.5 h, (b) 2 h, (c) 3 h, (d) 4 h and (e) 5 h. (f) A signal at m/z 522.1 for $[2 + OH]^+$. (g) A calculated isotopic distribution for $[2 + OH]^+$. (h) A signal at m/z 371.1 for $[Ru^{II}(\text{tetramethylfulvene})(\eta^5-C_5Me_5)]^+$. (i) A calculated isotopic distribution for $[Ru^{II}(\text{tetramethylfulvene})(\eta^5-C_5Me_5)]^+$. \ddagger Unidentified species.

Fig. S9 GC-MS data of C₂H₅OH and CH₃CHO obtained from the photo-induced oxidation of C₂H₆ by $[Ru_2^{IV}(\eta^5-C_5Me_5)_2(\mu-O)_2]^{2+}$ (**2**) in H₂O. GC-MS analysis for (a) *m/z* 46 derived from C₂H₅OH and (b) *m/z* 44 derived from CH₃CHO.

Fig. S10 ¹H NMR spectrum of $[Ru^{II}(\eta^5-C_5Me_5)(H_2O)_3](NO_3)$ {[1](NO₃)} in D₂O under a N₂ atmosphere, in which H₂O ligands should be D₂O ligands because of the use of D₂O as a solvent. 3-(Trimethylsilyl)-propionic-2,2,3,3-*d*₄ acid sodium salt (TSP), referenced with the methyl proton resonance set at 0.00 ppm. †: water. ‡: free acetonitrile released from Ru center, which was confirmed by comparison with free acetonitrile.

References

- 1 M. Takenaka, M. Kikkawa, T. Matsumoto, T. Yatabe, T. Ando, K.-S. Yoon and S. Ogo, *Chem. Asian J.*, 2018, **13**, 3180–3184.
- 2 A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652.
- 3 C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785–789.
- Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- 5 D. Andrae, U. Häußermann, M. Dolg, H. Stoll and H. Preuß, *Theor. Chim. Acta*, 1990, 77, 123–141.
- T. H. Dunning, Jr. and P. J. Hay, *in Modern Theoretical Chemistry*, Ed. Schaefer, H.
 F. III, Vol. 3 (Plenum, New York, 1977), pp. 1–28.
- 7 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 8 E. Runge and E. K. U. Gross, *Phys. Rev. Lett.*, 1984, **52**, 997–1000.