Smartphone-based Surface Plasmon Resonance Sensing Platform for Rapid Detection of Bacteria

Junlin Wen*a, Yufan Zhua, Jianbo Liua and Daigui He*b

^a School of Environmental Science and Engineering, Guangdong University of Technology,

Guangzhou 510006, P. R. China.

^b College of Artificial Intelligence, Guangdong Mechanical & Electrical Polytechnic, Guangzhou

510550, P. R. China.

* Corresponding author:

Tel. and fax: +86-20-36552429.

E-mail: jlwen@gdut.edu.cn (J. Wen); hedaigui@gdmec.edu.cn (D. He)

Figure S1 UV-VIS spectrum of the prepared AuNPs colloid.

Figure S2 UV-VIS spectrum of the dead *E. coli* suspended in ultrapure water.

Figure S3 Influence of NaCl amount on the responsive color signal. The signal was recorded in the presence of 700 μ L of AuNPs and 700 μ L of bacteria suspension with OD600 equal to 1.0. The initial concentration of NaCl solution is 1.0 mol/L.

Figure S4 Illustration of smartphone-based imaging of bacteria/AuNPs color development.

Figure S5 GRB signal of color-developed bacteria/AuNPs obtained with smartphone APP.

Table S1 Recovery of proposed sensing method in measuring bacteria-spiked water

Sample	Spiked bacteria (cfu/mL)	Recovery (%)	SD (%)
Tap water	5.0×10 ⁸	95.4	3.75
Drinking water	5.0×10 ⁸	85.7	4.66
Lake water	5.0×10 ⁸	86.2	4.83

samples