NiCo₂O₄ Thin Film Prepared by Electrochemically Deposition as Hole-Transport Layer for Efficient Inverted Perovskite Solar Cells

Sen Wang,^a Linqin Wang,^b Chang Liu,^a Yu Shan,^a Fusheng Li,^{*a} and Licheng Sun^{ab}

^aState Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, Dalian 116024, P. R. China.

^bCenter of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, 310024 Hangzhou, China.

*Corresponding author: fusheng@dlut.edu.cn

Figure S1. Tauc plot of NiCo₂O₄ film.

Figure S2. (a) UPS spectra of different NiCo₂O₄ films for work function and VB determination. The inset show the enlarged UPS spectra at the binding energy range of $15.5 \sim 17.0$, respectively. (b) The enlarged valence band position of different NiCo₂O₄ films.

The work function (E_{work} corresponding to the Fermi level), valence band (VB), and conduction band (CB) of NiCo₂O₄.

$$E_{\text{work}} = h \nu - (E_{\text{cutoff}} - E_F) \qquad equation S1$$

$$E_{VB} = E_{work} + E_{VBM}$$
 equation S2

$$E_{CB} = E_{VB} - E_{g}$$
 equation S3

Where, the E_{cutoff} is cut-off energy edge, the E_F is initial edge energy, the E_{VBM} is the energy from valence band maximum to Fermi level, the E_g is band gap energy (obtained by UV-vis spectra), the E_{VB} is valance band energy and the E_{CB} is conduction band energy.

For 0-NiCo₂O₄ film,

 $E_{\text{work}} = 21.22 - (16.45 - 0) = 4.77 \text{ eV}$; $E_{VB} = 4.77 + 0.22 = 4.99 \text{ eV}$; and $E_{CB} = 4.99 - 1.88 = 3.11 \text{ eV}$.

For 5-NiCo₂O₄ film,

 $E_{\text{work}} = 21.22 - (16.50 - 0) = 4.72 \text{ eV}$; $E_{VB} = 4.72 + 0.22 = 4.94 \text{ eV}$; and $E_{CB} = 4.94 - 1.88 = 3.06 \text{ eV}$.

For 10-NiCo₂O₄ film,

 $E_{\text{work}} = 21.22 - (16.65 - 0) = 4.57 \text{ eV}; E_{VB} = 4.57 + 0.22 = 4.79 \text{ eV}; \text{ and } E_{CB} = 4.79 - 1.88 = 2.91 \text{ eV}.$ $E_{\text{work}} = 21.2 - (17.15 - 0) = 4.05 \text{ eV}; E_{VB} = 4.05 + 1.76 = 5.81 \text{ eV}; \text{ and } E_{CB} = 5.81 - 2.09 = 3.72 \text{ eV}.$

Figure S3. XRD patterns of MAPbI₃ films deposited on NiOx and NiCo₂O₄ HTLs.

Figure S4. Top-view SEM images of the perovskite film deposited on a) NiO_x , b) 0-NiCo₂O₄, c) 5-NiCo₂O₄, and d) 10-NiCo₂O₄ HTL films prepared by the charge density of 10 mC·cm⁻².

Samples	$\tau_{ave}(ns)$	$\tau_1(ns)$	A1	$\tau_2(ns)$	A2
NiO _x /PSK	42.63	32.72	0.953	105.51	0.047
0-NiCo ₂ O ₄ /PSK	34.34	22.25	0.943	86.25	0.057
5-NiCo ₂ O ₄ /PSK	31.74	15.41	0.944	82.98	0.056
10-NiCo ₂ O ₄ /PSK	64.68	45.55	0.699	87.74	0.301

Table S1 Parameters of the TRPL spectroscopy based on different samples.

Figure S5. UV-vis absorption spectra of perovskite films on NiO_x and different

NiCo₂O₄ films.

Figure S6. a). J–V characteristics of the best PSCs based on 0-NiCo₂O₄ HTLs prepared by different charge densities. b). The statistics of 10 pieces of PSCs based on 0-NiCo₂O₄ HTLs prepared by different charge densities.

Depositon	Voc	Jsc	FF	PCE
charge density	(mV)	$(mA \cdot cm^{-2})$	(%)	(%)
$(mC \cdot cm^{-2})$				
5	$1.01 \pm 0.01 \ (1.01)$	20.84 ± 0.37	77.69 ± 1.42	16.35 ± 0.51
		(21.00)	(79.07)	(16.82)
10	$1.02 \pm 0.01 \ (1.02)$	$22.67 \pm 0.25 \; (22.93)$	77.85 ± 1.24	$17.93 \pm 0.29 \; (18.28)$
			(78.05)	
15	1.02 ± 0.01	$22.59 \pm 0.30 \ (22.71)$	72.62 ± 2.00	16.68 ± 0.37
	(1.02)		(74.37)	(17.19)
20	1.02 ± 0.01	$20.28 \pm 0.36 \ (20.36)$	73.78 ± 1.49	$15.24 \pm 0.16 \; (15.47)$
	(1.03)		(73.80)	

Table S2. Device parameters of the PSCs based on 0-NiCo2O4 HTLs preparedby different charge densities.

HTL	$V_{\rm oc}$	$J_{ m sc}$	FF	PCE
	(V)	$(mA \cdot cm^{-2})$	(%)	(%)
NiO _x	1.02 ± 0.01	20.63 ± 0.28	78.34 ± 1.38	18.17 ± 0.32
0-NiCo ₂ O ₄	1.03 ± 0.01	22.73 ± 0.36	77.29 ± 1.55	18.26 ± 0.37
5-NiCo ₂ O ₄	1.02 ± 0.01	23.88 ± 0.37	77.99 ± 1.17	18.94 ± 0.29
10-NiCo ₂ O ₄	1.01 ± 0.01	22.90 ± 0.44	72.66 ± 1.33	16.76 ± 0.23

Table S3. Photovoltaic parameters of PSCs based on NiOx and NiCo $_2O_4$ HTLsunder the illumination.

Figure S7. Dark *J-V* characteristics of the devices based on NiO_x and $NiCo_2O_4$ HTLs.

Figure S8. a) Current–voltage curves with reverse scan mode for the bestperforming devices based on 5-NiCo₂O₄ and NiO_x HTLs. b) The steady-state power output at the maximum power point for the optimized devices.

Table S4. Device parameters of the PSCs based on 5-NiCo ₂ O ₄ and NiO _x HTL	_S
with reverse scan mode.	

HTLs	Scan	V_{oc}	J_{sc}	FF	PCE
	direction	(V)	(mA·cm ⁻²)		(%)
NiO _x	Re	1.03	22.86	0.79	18.68
	Fw	1.02	22.89	0.80	18.75
5-NiCo ₂ O ₄	Re	1.02	24.31	0.78	19.24
	Fw	1.02	24.25	0.80	19.73