Supporting Information

Enhancing the quantum yield of singlet oxygen: Photocatalytic degradation of mustard gas simulant 2-chloroethyl ethyl sulfide catalyzed by a hybrid of polyhydroxyl aluminum cations and porphyrin anions

Ying Yang^{a,b}, Jianbo Yin^a, Fangsheng Tao^a, Yunshan Zhou^a*, Lijuan Zhang^a*, Yuxu Zhong^b*, Yongan Wang^b

^aState Key Laboratory of Chemical Resource Engineering, Institute of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China; ^bToxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China

1. Preparation of \varepsilon-[Al₁₃O₄(OH)₂₄(H₂O)₁₂]^{7+ 1}: AlCl₃·6H₂O (6 g, 25 mmol) was dissolved in 100 mL deionized water to obtain a 0.25 mol/L AlCl₃ solution. A 0.25 mol/L NaOH solution was obtained by dissolving NaOH (2.25 g, 56.25 mmol) in 225 mL deionized water. The AlCl₃ solution was stirred at 80 °C and the prepared NaOH solution was slowly dripped into the AlCl₃ solution (the time was longer than 15 min). At the end of the reaction, the \varepsilon-[Al₁₃O₄(OH)₂₄(H₂O)₁₂]⁷⁺ (6 mmol/L) clarification solution, referred to as Al₁₃⁷⁺ solution, was obtained.

2. Preparation of Al₁₃-SO₄¹: The 100 mL of the above Al₁₃⁷⁺ solution was slowly added to the 75 mL of a Na₂SO₄ solution (0.1 mol/L), and a large amount of white precipitation was formed after 1 day, which was recorded as Al₁₃-SO₄. The FTIR data (KBr, cm⁻¹): 1130 (w), 975 (w), 648 (m), 542 (s), 491 (w).

3. Preparation of the CEES standard curve

The standard curve of CEES was drawn according to Frank's method ²: 5 μ L of CEES was dissolved in 5 mL of methanol and mix well to obtain a 1 μ L/mL CEES stock solution. Then, 0, 20, 40, 60, 80, and 100 μ L of CEES stock solution was added into six different centrifuge tubes, followed by the addition of 100, 80, 60, 40, 20, and 0 μ L of absolute ethanol to each of these tubes, respectively. Then, 100 μ L of absolute ethanol and 200 μ L of blue reagent (blue reagent is prepared by dissolving 0.04 g NaOH and 0.24 g thymolphthalein in a mixed solution of 2.5 mL H₂O and 17.5 mL absolute ethanol) were added to each of the tubes. The above standard solution was placed in a water bath at 80 °C for 15 min. After cooling to room temperature, 0.6 mol/L acetic acid solution (5 μ L, 353 μ L HAc + 647 μ L distilled water) and 3 mL of 95% ethanol solution were added. At this time, the CEES standard solutions with different concentration gradients were prepared, and the absorbance at 445 nm was recorded. The absorbance and the concentration of the CEES standard solution were plotted and fitted to obtain the linear relationship of the standard curve.

The UV absorption and standard curve of CEES is shown in Figure S1. The relationship between the absorbance and concentration agrees with Eq. S1:

 $A = 00773 C + 0.0065 (R^2 = 0.9993)....(S1)$

Fig. S1 UV-visible absorbance of the CEES standard solution (Inset: the linear fitting relationship between UV-visible absorbance at the maximum absorption wavelength of 445 nm and CEES concentration). Concentrations of CEES relating to the lines from bottom to top are as follows: 0, 5.874, 11.748, 17.621, 23.495, 29.369 µg/mL.

The proton NMR (¹H NMR) spectrum of H₄TCPP and the solid-state NMR map of ²⁷Al in Al₁₃-TCPP are shown in Figure S2. Two hydrogen protons on the central nitrogen atom of the porphyrin ring at the -2.93 ppm chemical shift, hydrogen protons from four carboxyl groups at the 13.31 ppm chemical shift, 8 hydrogen on the pyrrole ring at the 8.86 ppm chemical shift, and 16 hydrogen on the benzene ring in the 8.33 ~ 8.40 ppm range can be seen in the 8.86 ppm chemical shift, which is consistent with the reported literature ³.

Fig. S2 ¹H NMR spectrum of H_4TCPP recorded in DMSO-d₆ at room temperature (a) and solidstate ²⁷Al NMR spectrum of Al₁₃-TCPP (b).

Fig. S5 The reusability of the degradation of CEES by Al₁₃-TCPP in methanol-water solvent mixture. Degradation conditions: 500 W xenon lamp ($\lambda > 400$ nm), reaction time 90 min, catalyst dosage: 5 mg Al₁₃-TCPP, 5 µL CEES.

Fig. S6 MS spectra of the degradation products of CEES appearing at different retention time (RT). Degradation conditions: 500 W xenon lamp ($\lambda > 400$ nm), reaction time 180 min, solvent: 5 mL methanol, catalyst dosage: 5 mg Al₁₃-TCPP, 5 µL CEES.

Table S1. The performance of different catalysts for the photocatalytic degradation of CEES by singlet oxygen

catalyst	Catalyst loading	oxidant	half-life (min)	light source	reference
	(compared to CEES)			(wavelength)	
PCN-222	4mol%	O ₂	12 min	blue LED	4
				(470nm)	

NU-1000	1mol%	O ₂	6 min	UV (390-400 nm)	5
NU-400	1mol%	O ₂	15 min	UV (390-400	6
Δα Τ D νD	1mo10/	O ₂	1.5min	white LED	7
Ag ₁₂ IFyF	1110170	Air	6min	(450-460nm)	
MOF-545	1mol%	O ₂	6 min	blue LED	8
WI01-545				(450nm)	
UMCM 212	1mol%	O ₂	4 min	blue LED	8
01010101-515				(450nm)	
Al ₁₃ -TCPP	0.0375mol%	Air	14.7 min	xenon lamp (>400nm)	this work

Fig. S8 The products of the catalytic degradation of CEES by Al₁₃-TCPP in methanol and methanol-water solvent mixture.

References

- 1. M. Wang and M. Muhammed, J. Nanomater., 1999, 11, 1219–1229.
- L. Zhang, J. Sun, Y. Zhou, Y. Zhong, Y. Ying, Y. Li, Y. Liu, Z. Zuhra and C. Huang, *J Mater Chem B*, 2017, 5, 6138-6146.
- K. Anjali, A. Vijayan, N. J. Venkatesha and A. Sakthivela, *Inorg. Chem. Commun.*, 2021, 123, 108302-108326.
- 4. Y. Liu, S. Y. Moon, J. T. Hupp and O. K. Farha, Acs Nano, 2015, 9, 12358-12364.
- Y. Liu, C. T. Buru, A. J. Howarth, J. J. Mahle, J. H. Buchanan, J. B. DeCoste, J. T. Hupp and O. K. Farha, *J. Mater. Chem. A*, 2016, 4, 13809-13813.
- G. Ayoub, M. Arhangelskis, X. Zhang, F. Son, T. Islamoglu, T. Friscic and O. K. Farha, Beilstein J. Nanotechnol., 2019, 10, 2422-2427.
- M. Cao, R. Pang, Q. Y. Wang, Z. Han, Z.-Y. Wang, X. Dong, S.-f. Li, S.-q. Zang and T. C. W. Mak, J. Am. Chem. Soc., 2019, 141, 14505-14509.
- 8. C. T. Buru, M. B. Majewski, A. J. Howarth, R. H. Lavroff, C.-W. Kung, A. W. Peters, S. Goswami and O. K. Farha, *ACS Appl. Mater. Interfaces*, 2018, **10**, 23802-23806.