Supporting Information:

Rational design of $M-N_4$ -Gr/V₂C heterostructures as highly active ORR catalysts: A density functional theory study

Yunjian Chen,^{a,b} Qi Jiang,^{a,b} Xue Bai, ^{a,b} Pengyue Shan, ^{a,b} Tong Liu ^{a,b}, Yazhou Wang, ^{a,b} Hong Cui, ^{a,b,*} Rong Feng, ^{a,b} Qin Kang, ^{a,b} Zhiyong Liang, ^{a,b} Hongkuan Yuan^c

- a. School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.
- b. Shaanxi Key Laboratory of Industrial Automation, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.
- c. School of Physical Science and Technology, Southwest University, Chongqing, 400715, China.

Fig. S1 The dos plots of M-3d, N-2p, C-2p for (a-g) $M-N_4$ -Gr/ V_2C (M=Ti, Cr, Mn, Fe, Co, Ni, Cu). The dotted line at zero represents the Fermi energy level.

Fig. S2 PDOS of O₂ adsorbed on (a-e) M-N₄-Gr/V₂C (Ti, Cr, Mn, Fe, Cu) catalysts with M-3d and O-2p. The inset is a distribution of exchange charges between O₂ and M-N₄-Gr/V₂C with the isovalue of 0.054 eÅ⁻³. The blue and yellow bubbles represent positive and negative charges, respectively.

Table S1 With or without V ₂ C as substrate	material M charge transfer amount($Q_{-M}(e)$).
--	---

Properties	$Q_{-M}(e)$	Properties	Q- _M (<i>e</i>)
Ti-N ₄ -Gr	1.66	$Ti-N_4-Gr/V_2C$	1.39
Cr-N ₄ -Gr	1.32	$Cr-N_4-Gr/V_2C$	0.99
Mn-N ₄ -Gr	1.37	Mn-N ₄ -Gr/V ₂ C	0.76
Fe-N ₄ -Gr	1.10	$Fe-N_4-Gr/V_2C$	0.63
Co-N ₄ -Gr	0.90	$Co-N_4-Gr/V_2C$	0.61
Ni-N ₄ -Gr	0.86	$Ni-N_4-Gr/V_2C$	0.62
Cu-N ₄ -Gr	0.94	$Cu-N_4-Gr/V_2C$	0.70