Two statins and cromolyn as possible drugs against the cytotoxicity of A β (31-35) and A β (25-35) peptides: a comparative study by advanced computer simulations methods

Supporting Information

Fredrik Blomgren, Dawid Wojciech Pacut, Wojciech Chrobak, Alexander Rodin, Jan Swenson, Inna Ermilova*

Department of Physics, Chalmers University of Technology, SE 412 96, Gothenburg, Sweden

E-mail: inna.ermilova@chalmers.se; ina.ermilova@gmail.com

Content

1. Derived models

- 1.1. Partial atomic charges for cromolyn Figure S1.
- 1.2. Partial atomic charges for atorvastatin Figure S2.
- 1.3. Partial atomic charges for lovastatin Figure S3.

2. Classical MD: convergence, dimensions, concentrations, sizes

- 2.1. Proof of convergence, shown using some simulations Figures S4-S5.
- 2.2. Final sizes of simulation boxes Table S1.
- 2.3. Concentrations of components for systems with cromolyn Table S2.
- 2.4. Concentrations of components for systems with a orvastatin Table S3.
- 2.5. Concentrations of components for systems with lovastatin Table S4.

3. Classical MD: inter- and intramolecular interactions (radial distribution functions, contacts maps)

 \bullet 3.1. Radius of gyration of compounds (peptides and drugs) for systems with 6 molecules - Table S5.

 \bullet 3.2. Radius of gyration of compounds (peptides and drugs) for systems with 8 molecules - Table S6.

- 3.3. RDFs between molecular centers of mass of drugs Figure S6.
- 3.4. RDFs between centers of mass of amino-acid residues and drugs Figures S7-S16.
- 3.5. Contact maps for peptides in different simulations Figures S17-S18.

4. Classical MD: secondary structures of peptides

• 4. Secondary structures of single peptides - Figures S19-S30.

5. Well-tempered metadynamics: potential of mean force profiles

• 5. Potential of mean force profiles for the binding between drug molecules and peptides - Figure S31.

1 Drug models: partial atomic charges

Figure S1: Partial atomic charges for cromolyn. Charges for hydrogen atoms are in parenthesis. Charge colors have the following meaning: red is for oxygen, black is for carbon, light violet is for hydrogen.

Figure S2: Partial atomic charges for atorvastatin. Charges for hydrogen atoms are in parenthesis. Charge colors have the following meaning: red is for oxygen, black is for carbon, light violet is for hydrogen, blue is for nitrogen, green is for fluor.

Figure S3: Partial atomic charges for lovastatin. Charges for hydrogen atoms are in parenthesis. Charge colors have the following meaning: red is for oxygen, black is for carbon, light violet is for hydrogen.

2 Classical MD: Final dimensions of simulation boxes and proofs of equilibration

Figure S4: Convergence of total energy profiles for some simulated systems. (a) Systems containing 6 A $\beta(25-35)$ (b) Systems containing 6 A $\beta(31-35)$ (c) Systems containing 8 A $\beta(25-35)$ (d) Systems containing 8 A $\beta(31-35)$. Abbreviations mean the following: "no drug" - systems with no drugs, "cro." - systems containing cromolyn, "avs." - systems containing atorvastatin, "lvs." - systems containing lovastatin.

Figure S5: Root mean square deviation (RMSD) for selected single peptides in some simulated systems. (a) Systems containing $6 \ A\beta(25-35)$ (b) Systems containing $6 \ A\beta(31-35)$ (c) Systems containing $8 \ A\beta(25-35)$ (d) Systems containing $8 \ A\beta(31-35)$. Abbreviations mean the following: "no drug" - systems with no drugs, "cro." - systems containing cromolyn, "avs." - systems containing atorvastatin, "lvs." - systems containing lovastatin.

System	Cromolyn	Atorvastatin	Lovastatin
	x=y=z	x=y=z	x=y=z
6 Drug	6.77	6.78	6.77
8 Drug	6.77	6.79	6.78
$6 \text{ A}\beta(25 - 35) + 6 \text{ Drug}$	6.82	6.83	6.82
$8 \text{ A}\beta(25 - 35) + 8 \text{ Drug}$	6.84	6.86	6.85
$6 \text{ A}\beta(31 - 35) + 6 \text{ Drug}$	6.80	6.81	6.80
$8 \text{ A}\beta(31 - 35) + 8 \text{ Drug}$	6.82	6.83	6.82

Table S1: Dimensions of simulation boxes (in nm) after the equilibration (classical MD).

For calculations of molar concentrations the following equation was applied:

$$c = \frac{N}{N_A V} \tag{S1}$$

In this formula: N is the number of molecules of a component, $N_A = 6.02214076 \cdot 10^{23} \ mol^{-1}$ is the Avogadro's number, V is the volume of the simulation box after the equilibration.

System	$c(A\beta)$	c(Drug)	c(counter)
6 Drug	none	32.11	none
8 Drug	none	42.81	none
$6 \text{ A}\beta(25-35)+6 \text{ Drug}$	31.41	31.41	31.41
8 A $\beta(25 - 35)$ +8 Drug	41.51	41.51	41.51
$6 \text{ A}\beta(31 - 35) + 6 \text{ Drug}$	31.69	31.69	none
8 A β (31 – 35)+8 Drug	41.88	41.88	none

Table S2: Concentrations (c) of components (in mol/m^3) for systems with Cromolyn. "counter" represents Cl counter ions.

Table S3: Concentrations (c) of components (in mol/m^3) for systems with Atorvastatin. "counter" represents Cl counter ions.

System	$c(A\beta)$	c(Drug)	c(counter)
6 Drug	none	31.97	none
8 Drug	none	42.44	none
$6 \text{ A}\beta(25 - 35) + 6 \text{ Drug}$	31.27	31.27	31.27
8 A $\beta(25 - 35) + 8$ Drug	41.15	41.15	41.15
$6 \text{ A}\beta(31 - 35) + 6 \text{ Drug}$	31.55	31.55	none
8 A β (31 – 35)+8 Drug	41.69	41.69	none

Table S4: Concentrations (c) of components (in mol/m^3) for systems with Lovastatin. "counter" represents Cl counter ions.

System	$c(A\beta)$	c(Drug)	c(counter)
6 Drug	none	32.11	none
8 Drug	none	42.62	none
$6 \text{ A}\beta(25 - 35) + 6 \text{ Drug}$	31.41	31.41	31.41
8 A $\beta(25 - 35)$ +8 Drug	41.33	41.33	41.33
$6 \text{ A}\beta(31 - 35) + 6 \text{ Drug}$	31.69	31.69	none
8 A β (31 – 35)+8 Drug	41.88	41.88	none

3 Classical MD: RDFs, radius of gyration and contact maps

System	Peptide	Drug
pure cro.	_	1.59
pure avs.	_	2.05
pure lvs.	—	2.17
$A\beta(25-35)$ & cro.	3.06	2.16
$A\beta(25-35)$ & avs.	2.82	1.62
$A\beta(25-35)$ & lvs.	3.15	2.14
$A\beta(25-35)$ (pure)	2.94	_
$A\beta(31-35)$ & cro.	2.82	1.99
$A\beta(31 - 35)$ & avs.	2.61	1.83
$A\beta(31-35)$ & lvs.	2.29	1.93
$A\beta(31-35)$ (pure)	3.00	—

Table S5: Radius of gyration in nm (systems with 6 molecules).

Table S6: Radius of gyration in nm (systems with 8 molecules).

System	Peptide	Drug
pure cro.	_	1.94
pure avs.	_	2.17
pure lvs.	—	1.94
$A\beta(25-35)$ & cro.	2.92	2.17
$A\beta(25-35)$ & avs.	3.06	2.08
$A\beta(25-35)$ & lvs.	3.30	2.75
$A\beta(25 - 35)$ (pure)	3.01	_
$A\beta(31-35)$ & cro.	2.42	1.94
$A\beta(31-35)$ & avs.	2.84	2.52
$A\beta(31-35)$ & lvs.	2.61	2.20
$A\beta(31 - 35)$ (pure)	2.73	_

Figure S6: Radial distribution functions between molecular centers of mass of drugs. (a) Systems without (pure) and with 6 A $\beta(25 - 35)$. (b) Systems without (pure) and with 6 A $\beta(31 - 35)$. (c) Systems without (pure) and with 8 A $\beta(25 - 35)$. (d) Systems without (pure) and with 8 A $\beta(31 - 35)$. Abbreviations mean the following: "cro." - systems containing cromolyn, "avs." - systems containing atorvastatin, "lvs." - systems containing lovastatin. Here curves for systems without peptides were plotted for a comparison.

Figure S7: Radial distribution functions between molecular centers of mass of glycine (GLY_{25}) and drugs. (a) Systems containing 6 A $\beta(25-35)$ with and without drugs. (b) Systems containing 8 A $\beta(25-35)$ with and without drugs. Abbreviations mean the following: "cro." - systems containing cromolyn, "avs." - systems containing atorvastatin, "lvs." - systems containing lovastatin.

Figure S8: Radial distribution functions between molecular centers of mass of serine (SER_{26}) and drugs. (a) Systems containing 6 A $\beta(25-35)$ with and without drugs. (b) Systems containing 8 A $\beta(25-35)$ with and without drugs. Abbreviations mean the following: "cro." - systems containing cromolyn, "avs." - systems containing atorvastatin, "lvs." - systems containing lovastatin.

Figure S9: Radial distribution functions between molecular centers of mass of asparagine (ASN_{27}) and drugs. (a) Systems containing 6 A $\beta(25-35)$ with and without drugs. (b) Systems containing 8 A $\beta(25-35)$ with and without drugs. Abbreviations mean the following: "cro." - systems containing cromolyn, "avs." - systems containing atorvastatin, "lvs." - systems containing lovastatin.

Figure S10: Radial distribution functions between molecular centers of mass of lysine (LYS_{28}) and drugs. (a) Systems containing 6 A $\beta(25-35)$ with and without drugs. (b) Systems containing 8 A $\beta(25-35)$ with and without drugs. Abbreviations mean the following: "cro." - systems containing cromolyn, "avs." - systems containing atorvastatin, "lys." - systems containing lovastatin.

Figure S11: Radial distribution functions between molecular centers of mass of glycine (GLY_{29}) and drugs. (a) Systems containing 6 A $\beta(25-35)$ with and without drugs. (b) Systems containing 8 A $\beta(25-35)$ with and without drugs. Abbreviations mean the following: "cro." - systems containing cromolyn, "avs." - systems containing atorvastatin, "lvs." - systems containing lovastatin.

Figure S12: Radial distribution functions between molecular centers of mass of alanine (ALA_{30}) and drugs. (a) Systems containing 6 A $\beta(25-35)$ with and without drugs. (b) Systems containing 8 A $\beta(25-35)$ with and without drugs. Abbreviations mean the following: "cro." - systems containing cromolyn, "avs." - systems containing atorvastatin, "lvs." - systems containing lovastatin.

Figure S13: Radial distribution functions between molecular centers of mass of isoleucine (ILE_{31}) and drugs. (a) Systems containing 6 A $\beta(25-35)$ with and without drugs. (b) Systems containing 6 A $\beta(31-35)$ with and without drugs. (c) Systems containing 8 A $\beta(25-35)$ with and without drugs. (d) Systems containing 8 A $\beta(31-35)$ with and without drugs. Abbreviations mean the following: "cro." - systems containing cromolyn, "avs." - systems containing atorvastatin, "lvs." systems containing lovastatin.

Figure S14: Radial distribution functions between molecular centers of mass of isoleucine (ILE_{32}) and drugs. (a) Systems containing 6 A $\beta(25-35)$ with and without drugs. (b) Systems containing 6 A $\beta(31-35)$ with and without drugs. (c) Systems containing 8 A $\beta(25-35)$ with and without drugs. (d) Systems containing 8 A $\beta(31-35)$ with and without drugs. Abbreviations mean the following: "cro." - systems containing cromolyn, "avs." - systems containing atorvastatin, "lvs." systems containing lovastatin.

Figure S15: Radial distribution functions between molecular centers of mass of glycine (GLY_{33}) and drugs. (a) Systems containing 6 A $\beta(25-35)$ with and without drugs. (b) Systems containing 6 A $\beta(31-35)$ with and without drugs. (c) Systems containing 8 A $\beta(25-35)$ with and without drugs. (d) Systems containing 8 A $\beta(31-35)$ with and without drugs. Abbreviations mean the following: "cro." - systems containing cromolyn, "avs." - systems containing atorvastatin, "lvs." systems containing lovastatin.

Figure S16: Radial distribution functions between molecular centers of mass of leucine (LEU_{34}) and drugs. (a) Systems containing 6 A $\beta(25-35)$ with and without drugs. (b) Systems containing 6 A $\beta(31-35)$ with and without drugs. (c) Systems containing 8 A $\beta(25-35)$ with and without drugs. (d) Systems containing 8 A $\beta(31-35)$ with and without drugs. Abbreviations mean the following: "cro." - systems containing cromolyn, "avs." - systems containing atorvastatin, "lvs." systems containing lovastatin.

Figure S17: Contact maps for systems with 6 molecules, computed during the last 50 ns. (a) $A\beta(25-35)$ and cromolyn. (b) $A\beta(31-35)$ and cromolyn. (c) $A\beta(25-35)$ and atorvastatin. (d) $A\beta(31-35)$ and atorvastatin. (e) $A\beta(25-35)$ and lovastatin. (f) $A\beta(31-35)$ and lovastatin.

Figure S18: Contact maps for systems with 8 molecules, computed during the last 50 ns. (a) $A\beta(25-35)$ and cromolyn. (b) $A\beta(31-35)$ and cromolyn. (c) $A\beta(25-35)$ and atorvastatin. (d) $A\beta(31-35)$ and atorvastatin. (e) $A\beta(25-35)$ and lovastatin. (f) $A\beta(31-35)$ and lovastatin.

4 Classical MD: secondary structures of peptides

Figure S19: Secondary structures of $A\beta(25-35)$ for the system containing 6 peptides and 6 molecules of cromolyn. Secondary structures are coded as the following: T - turn, E - extended conformation, B - isolated β -bridge, H - α -helix, G - 3_{10} -helix, I - π -helix, C - coil. Letters (a)-(f) are denoting separate peptides.

Figure S20: Secondary structures of $A\beta(31 - 35)$ for the system containing 6 peptides and 6 molecules of cromolyn. Secondary structures are coded as the following: T - turn, E - extended conformation, B - isolated β -bridge, H - α -helix, G - 3_{10} -helix, I - π -helix, C - coil. Letters (a)-(f) are denoting separate peptides.

Figure S21: Secondary structures of $A\beta(25-35)$ for the system containing 8 peptides and 8 molecules of cromolyn. Secondary structures are coded as the following: T - turn, E - extended conformation, B - isolated β -bridge, H - α -helix, G - 3_{10} -helix, I - π -helix, C - coil. Letters (a)-(h) are denoting separate peptides.

Figure S22: Secondary structures of $A\beta(31 - 35)$ for the system containing 8 peptides and 8 molecules of cromolyn. Secondary structures are coded as the following: T - turn, E - extended conformation, B - isolated β -bridge, H - α -helix, G - 3_{10} -helix, I - π -helix, C - coil. Letters (a)-(h) are denoting separate peptides.

Figure S23: Secondary structures of $A\beta(25 - 35)$ for the system containing 6 peptides and 6 molecules of atorvastatin. Secondary structures are coded as the following: T - turn, E - extended conformation, B - isolated β -bridge, H - α -helix, G - 3_{10} -helix, I - π -helix, C - coil. Letters (a)-(f) are denoting separate peptides.

Figure S24: Secondary structures of $A\beta(31 - 35)$ for the system containing 6 peptides and 6 molecules of atorvastatin. Secondary structures are coded as the following: T - turn, E - extended conformation, B - isolated β -bridge, H - α -helix, G - 3_{10} -helix, I - π -helix, C - coil. Letters (a)-(f) are denoting separate peptides. S24

Figure S25: Secondary structures of $A\beta(25 - 35)$ for the system containing 8 peptides and 8 molecules of atorvastatin. Secondary structures are coded as the following: T - turn, E - extended conformation, B - isolated β -bridge, H - α -helix, G - 3_{10} -helix, I - π -helix, C - coil. Letters (a)-(h) are denoting separate peptides.

Figure S26: Secondary structures of $A\beta(31 - 35)$ for the system containing 8 peptides and 8 molecules of atorvastatin. Secondary structures are coded as the following: T - turn, E - extended conformation, B - isolated β -bridge, H - α -helix, G - 3_{10} -helix, I - π -helix, C - coil. Letters (a)-(h) are denoting separate peptides.

Figure S27: Secondary structures of $A\beta(25-35)$ for the system containing 6 peptides and 6 molecules of lovastatin. Secondary structures are coded as the following: T - turn, E - extended conformation, B - isolated β -bridge, H - α -helix, G - 3_{10} -helix, I - π -helix, C - coil. Letters (a)-(f) are denoting separate peptides.

Figure S28: Secondary structures of $A\beta(31 - 35)$ for the system containing 6 peptides and 6 molecules of lovastatin. Secondary structures are coded as the following: T - turn, E - extended conformation, B - isolated β -bridge, H - α -helix, G - 3_{10} -helix, I - π -helix, C - coil. Letters (a)-(f) are denoting separate peptides.

Figure S29: Secondary structures of $A\beta(25 - 35)$ for the system containing 8 peptides and 8 molecules of lovastatin. Secondary structures are coded as the following: T - turn, E - extended conformation, B - isolated β -bridge, H - α -helix, G - 3_{10} -helix, I - π -helix, C - coil. Letters (a)-(h) are denoting separate peptides.

Figure S30: Secondary structures of $A\beta(31 - 35)$ for the system containing 8 peptides and 8 molecules of lovastatin. Secondary structures are coded as the following: T - turn, E - extended conformation, B - isolated β -bridge, H - α -helix, G - 3_{10} -helix, I - π -helix, C - coil. Letters (a)-(h) are denoting separate peptides.

5 Well-tempered metadynamics: potential of mean force profiles

Figure S31: Potential of mean force profiles for CV2. (a) Systems with $A\beta(25-35)$. (b) Systems with $A\beta(31-35)$. Abbreviations mean the following: "cro." - systems containing cromolyn, "avs." - systems containing atorvastatin, "lvs." - systems containing lovastatin.