Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Transition metal decorated phthalocyanine as potential host material for

lithium polysulfides: a first-principles study

Jiezhen Xia^{a,b#}, Rong Cao^{a,b#} and Qi Wu^{a,b,c*}

^aDepartment of Physics, School of Science, Tibet University, Lhasa 850000, China ^bInstitute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa 850000, China

^cKey Laboratory of Key Laboratory of Cosmic Rays (Tibet University), Ministry of Education, Lhasa 850000,

China

Both authors are co-first authors and contributed equally to this work.

*To whom correspondence should be addressed: Qi Wu (email: wuqi_zangda@163.com)

$E_{ m f}(m eV)$
-5.8239
-4.4653
-2.9180
-2.5938
-2.6510
-2.6136
-3.5866
-4.2735
3.5829
-2.6117

Table S1. The formation energy (E_f) of all optimized TMPc structures.

Species	Eb (eV)	Li1-S Bond Length (Å)	Li2-S Bond Length (Å)	M-S Bond Length (Å)
Pristine Li ₂ S	/	2.09	2.09	/
H_2Pc	1.43	2.19	2.19	/
YPc	2.22	2.28	2.28	2.62
ZrPc	5.18	2.40	2.41	2.42
NbPc	4.63	2.36	2.37	2.33
MoPc	3.11	2.33	2.28	2.31
TcPc	2.64	2.29	2.24	2.29
RuPc	3.65	2.21	2.24	2.35
RhPc	2.34	2.19	2.22	2.56
PdPc	0.86	2.19	2.19	3.77
AgPc	1.38	2.19	2.19	3.33
CdPc	3.35	2.24	2.23	2.45

Table S2. Bond lengths in pristine Li₂S cluster and TMPc-Li₂S system.

Fig. S1. (a)-(f) are the fully relaxed lowest-energy binding configurations of S_8/Li_2S_x (x = 1, 2, 4, 6, 8) adsorbed on H₂Pc/TMPc (TM = Y, Zr, Nb, Mo, Tc) substrates. Here, the top view and side view are given, respectively.

Fig. S2. (a)-(e) are the fully relaxed lowest-energy binding configurations of S_8/Li_2S_x (x = 1, 2, 4, 6, 8) adsorbed on H₂Pc/TMPc (TM = Tc, Ru, Pd, Ag, Cd) substrates. Here, the top view and side view are given, respectively.

Fig. S3. The stable structures (IS), decomposed Li_2S adsorption structures before and after optimization of the (a) H_2Pc-Li_2S and (b) PdPc-Li_2S systems.

Fig. S4. The results of AIMD simulation of (Y, Mo, Tc, Ru, Rh, Pd, Ag and Cd)Pc structures, respectively. The illustration in the lower left corner is the optimized TMPc(TM= Y, Mo, Tc, Ru, Rh, Pd, Ag and Cd) structures, and the lower right corner is after AIMD simulation.