## Electronic supplementary information for

## Selective hydroconversion of coconut oil-derived lauric acid to alcohol and aliphatic alkanes over MoO<sub>x</sub>-modified Ru catalysts under mild conditions

## Rodiansono,<sup>*a,b*\*</sup> Heny Puspita Dewi,<sup>*a,b*</sup> Kamilia Mustikasari,<sup>*a*</sup> Maria Dewi Astuti,<sup>*a*</sup> Sadang Husain,<sup>*c*</sup> Sutomo<sup>*d*</sup>

<sup>a</sup> Department of Chemistry, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University, Jl. A. Yani Km 36.0 Banjarbaru South Kalimantan, Indonesia.

<sup>b</sup> Catalysis for Sustainable Energy and Environment (CATSuRe), Lambung Mangkurat University. e-mail: <u>rodiansono@ulm.ac.id</u> Tel./Fax.: +625114773112

<sup>c</sup> Department of Physics, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University

<sup>d</sup> Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University

## Contents:

- 1) Physicochemical properties of the syntesised  $Ru_{y}MoO_{x}/TiO_{2}$  catalysts (Tabe 1)
- XRD patterns of Ru-(y)MoO<sub>x</sub>/TiO<sub>2</sub> catalysts before and after reduction with H2 at 300-600°C for 3 h
- 3) XRD patterns of recovered Ru-(0.026)MoO<sub>x</sub>/TiO<sub>2</sub> catalyst
- 4) TEM images of Ru-(0.026)MoO<sub>x</sub>/TiO<sub>2</sub> catalyst before reaction and recovered
- 5) Typical GC chart of reaction results of hydroconversion of lauric acid to lauryl alcohol and alkane using Ru–MoO<sub>x</sub>/TiO<sub>2</sub> catalysts

The physico-chemical properties such as specific surface area BET ( $S_{BET}$ ), average Ru particle sizes, total acidity, and H<sub>2</sub> uptake of Ru-MoO<sub>x</sub>/TiO<sub>2</sub> are summarized in **Table S1**.

| Entry                 | Catalyst                                             | Mo loading<br>amount<br>(mmol g <sup>-1</sup> ) | S <sub>BET</sub> <sup>a</sup> (m²/g) | V <sub>pore</sub> <sup>a</sup> (cm <sup>3</sup> /g) | D <sup>♭</sup> (nm) | Total Acid <sup>c</sup><br>(μmol NH <sub>3</sub> /g) |
|-----------------------|------------------------------------------------------|-------------------------------------------------|--------------------------------------|-----------------------------------------------------|---------------------|------------------------------------------------------|
| 1                     | Ru–(0.011)MoO <sub>x</sub> /TiO <sub>2</sub>         | 0.011                                           | 23.7                                 | 0.035                                               | nd                  | 223                                                  |
| 2 <sup><i>d</i></sup> | Ru–(0.026)MoO <sub>x</sub> /TiO <sub>2</sub>         | 0026                                            | 20.8                                 | 0.029                                               | 3.48                | 199                                                  |
| 3                     | Ru–(0.049)MoO <sub>x</sub> /TiO <sub>2</sub>         | 0.049                                           | 21.3                                 | 0.033                                               | nd                  | 201                                                  |
| 4                     | Ru–MoO <sub>x</sub> /TiO <sub>2</sub>                | 0.026                                           | 19.8                                 | 0.031                                               | 3.48                | 298                                                  |
| 5                     | Ru–MoO <sub>x</sub> /TiO <sub>2</sub><br>[recovered] | 0.026                                           | 20.4                                 | 0.034                                               | n.a.                | n.a                                                  |

Table S1 Physico-chemical properties of Ru-MoO<sub>x</sub>/TiO<sub>2</sub> catalyst

 ${}^{e}S_{BET}$  is specific surface areas, determined by N<sub>2</sub> physisorption at 77 K using BET method.  ${}^{b}Average$  particle sizes of Ru derived from TEM images.  ${}^{c}Acidity$  was derived from NH<sub>3</sub>-TPD spectra.  ${}^{d}Recovered$  catalyst after the second reaction of lauric acid hydroconversion.

The XRD analysis of H<sub>2</sub>-activated Ru–(0.026)MoO<sub>x</sub>/TiO<sub>2</sub> at 400°C and 500°C (Fig. S1) unable to detect the formations of metallic Ru or bimetallic Ru-MoO<sub>x</sub> phase due to its extremely very small the Ru particle sizes.



**Fig. S1** XRD patterns of (a)  $5wt\%Ru@MoO_3$ , (b)  $5wt\%Ru/TiO_2$ , and  $Ru-(y)MoO_x/TiO_2$  with different Mo loading amount of (c) 0.011 mmol g<sup>-1</sup>, (d) 0.026 mmol g<sup>-1</sup>, and (e) 0.049 mmol g<sup>-1</sup> after reduction with H<sub>2</sub> at 400°C for 3 h.

A typical TEM images of H<sub>2</sub>-reduced Ru–(0.026)MoO<sub>x</sub>/TiO<sub>2</sub> at 400°C for 1.5 h showed the dispersed both Ru and Mo species on surface of TiO<sub>2</sub> and the estimated particle sizes of metallic Ru were around 3.48 nm as indicated in Fig. S2.



Fig. S2 Typical TEM images of Ru–(0.026)MoO<sub>x</sub>/TiO<sub>2</sub> catalyst after reduction with H<sub>2</sub> at 400°C for 3 h.



Fig. S3 Typical TEM images of Ru–(0.049)MoO<sub>x</sub>/TiO<sub>2</sub> catalyst after reduction with H<sub>2</sub> at 400°C for 3 h.



**Fig. S4** NH<sub>3</sub>-TPD profiles of Ru-MoOx/TiO<sub>2</sub> with different Mo loading amount of 0.026 mmol  $g^{-1}$  and 0.049 mmol  $g^{-1}$  catalysts after reduction with H<sub>2</sub> at 400°C for 3 h.



**Fig. S5** Pyridine adsorption profiles of (a)  $5wt\%Ru/TiO_2$ , (b)  $Ru-(0.026)MoOx/TiO_2$ , (c)  $Ru-(0.049)MoOx/TiO_2$  catalysts after reduction with H<sub>2</sub> at 400°C for 3 h.



**Fig. S6** XRD patterns of Ru–MoO<sub>x</sub> supported on (a) SiO<sub>2</sub>, (b) charcoal (active carbon), (c)  $\gamma$ –Al<sub>2</sub>O<sub>3</sub>, and (d) ZrO<sub>2</sub> catalysts after reduction with H<sub>2</sub> at 400°C for 3 h.



Fig. S7 XRD patterns of  $Ru-MoO_x/C-TiO_2$  (a) as-prepared and (b) after reduction with  $H_2$  at 400°C for 3 h.



**Fig. S8** XRD patterns of (a)  $Ru(5wt\%)/TiO_2$  anatase and  $Ru-(0.026)MoO_x/TiO_2$  after reduction with H<sub>2</sub> at different temperature of (b) 400°C, (c) 500°C and (d) 600°C for 3 h.



Fig. S9 XRD patterns of recovered Ru–(0.026) $MoO_x/TiO_2$  (500°C/H<sub>2</sub>) catalyst after the 2<sup>nd</sup> recylced reaction run.



Fig. S10 Typical TEM images of recovered Ru–(0.026) $MoO_x/TiO_2$  (500°C/H<sub>2</sub>) catalyst after the 2<sup>nd</sup> recylced reaction run.



Fig. S11 Typical GC chart of reaction results of hydroconversion of lauric acid to lauryl alcohol and alkane using  $Ru-MoO_x/TiO_2$  (R) catalyst (Table 2. Entry 3).



Fig. S12 Typical GC chart of reaction results of hydroconversion of lauric acid to lauryl alcohol and alkane using Ru-MoO<sub>x</sub>/C-TiO2 catalyst (Table 3, entry 2).



Fig. S13 Typical GC chart of reaction results of hydroconversion of lauric acid to lauryl alcohol and alkane using Ru- $MoO_x/TiO_2$  catalyst (Figure 5, 130°C, 40 bar, 12 h). Conversion (58%), Yield of dodecane-1-ol (20.2%), yield of n-dodecane (2%), and yield of dodecyldodecanoate (35.7%).