Supporting Information

Catalytic oxygen evolution from hydrogen peroxide by trans-[Co(en)₂Cl₂]@InBTB metal-organic framework catalytic system

Sukbin Yoon,^a In-Hwan Choi,^a Youngmee Kim,^{*b} and Seong Huh^{*a}

^aDepartment of Chemistry and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea. E-mail: shuh@hufs.ac.kr ^bInstitute of Nano-Bio Technology, Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea, E-mail: ymeekim@ewha.ac.kr

MOFs	a (Å)	<i>b</i> (Å)	<i>c</i> (Å)	$V(Å^3)$	Ref.
InBTB	44.2269(19)	44.2269(19)	42.519(2)	72026(6)	[1]
trans-[Co(en)2Cl2]@InBTB	44.879(8)	44.879(8)	42.029(7)	73311(22)	This work
RD@InBTB	45.597(6)	45.597(6)	40.718(8)	73314(21)	[1]
Ru(bpy)3@InBTB	44.7175(10)	44.7175(10)	42.1464(11)	72987(4)	[3]
Ru(phen) ₃ @InBTB	44.8647(7)	44.8647(7)	41.8779(8)	73000(3)	[3]
Ru(bpz)3@InBTB	45.1932(4)	45.1932(4)	41.6636(5)	73694(16)	[3]

 Table S1. The comparison of trigonal unit cell dimensions for as-prepared InBTB and various guest@InBTB MOFs.

Figure S1. The crystal structure of a doubly-interpenetrated InBTB framework shown along the *c*-axis (a) and the *a*-axis (b). Hydrogen atoms are omitted for clarity. The corresponding Connolly surface (c) [1].

Figure S2. PXRD patterns of as-prepared InBTB (a) and *trans*-[Co(en)₂Cl₂]@InBTB (b).

Figure S3. Recycling experimental results of H_2O_2 decomposition reaction catalyzed by *trans*-[Co(en)₂Cl₂]@InBTB at 40 °C.

Figure S4. Digital photo images of the ethanol suspension of *trans*- $[Co(en)_2Cl_2]$ @InBTB formed through the encapsulation of *trans*- $[Co(en)_2Cl_2]^+$ ion by InBTB (a) and H₂O₂-treated *trans*- $[Co(en)_2Cl_2]$ @InBTB in deionized water (b).

Figure S5. FT-IR spectra of *cis*-[Co(en)₂Cl₂]Cl (a), *trans*-[Co(en)₂Cl₂]Cl (b), and H₂O₂-treated *trans*-[Co(en)₂Cl₂]Cl (c).

References

[1] E.-Y. Cho, J.-M. Gu, I.-H. Choi, W.-S. Kim, Y.-K. Hwang, S. Huh, S.-J. Kim and Y. Kim, *Cryst. Growth Des.*, 2014, **14**, 5026-5033.

[2] J. C. Bailar, Inorg. Synth., 1946, 2, 222-225.

[3] I.-H. Choi, S. Yoon, S. Huh, S.-J. Kim and Y. Kim, Chem. Eur. J., 2020, 26, 14580-14584.