Supporting information

For

Effects of Ti-doping amount and annealing temperature on electrochromic performance of sol-gel derived WO₃

Hee sung Park⁹, Sunghyeok Park¹⁰, Seung Han Song⁹, Dao Thi Thuy¹⁰, Hung Van Tran¹⁰,
Seok In Lee¹⁰, Churl Hee Cho*¹⁰, Chi-Hwan Han*⁹ and Sungjun Hong*⁹

*Photovoltaic Laboratory, New and Renewable Energy Research, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34125, Republic of Korea.

Department of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 35015, Republic of Korea

Renewable Energy Engineering, University of Science and Technology, 217, Gajeoung-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.

Department of Chemistry, Korea University, Seoul 02741, Republic of Korea

*Corresponding author (C-H Cho., C.-H. Han., S-J Hong.)
Figure S1. SEM surface and cross-sectional images of (1st row) 4Ti-WO₃, (2nd row) 12Ti-WO₃, (3rd row) 16Ti-WO₃ and (4th row) 20Ti-WO₃ films annealed at 200, 250, 300, 350 and 400 °C from left to right, respectively.

Figure S2. XRD patterns of neat and respective TCA doped WO₃ films annealed at (a) 250 and (b) 350 °C. (The light blue and grey circles refer to monoclinic WO₃ and FTO substrate, respectively.)
Figure S3. Atomic ratios of P/W or Ti/W for xTi-WO$_3$-300 samples determined with EDS.
Figure S4. Cyclic voltammograms of various WO$_3$ films annealed at (a) 200, (b) 250, (c) 300, (d) 350, and (e) 400 °C, respectively.
Figure S5. Calculations of diffusion coefficients of various WO₃ films annealed at (a) 200, (b) 250, (c) 300, (d) 350, and (e) 400 °C, respectively.
Figure S6. Calculated diffusion coefficients of (a) 0Ti-WO₃, (b) 4Ti-WO₃, (c) 8Ti-WO₃, (d) 12Ti-WO₃, (e) 16Ti-WO₃, and (f) 20Ti-WO₃ at various annealing temperatures.
Figure S7. In-situ UV-Visible transmittance variations for (a) 0Ti-WO₃-200, (b) 4Ti-WO₃-200, (c) 8Ti-WO₃-200, (d) 12Ti-WO₃-200, (e) 16Ti-WO₃-200, and (f) 20Ti-WO₃-200, respectively.
Figure S8. In-situ UV-Visible transmittance variations for (a) 0Ti-WO$_3$-250, (b) 4Ti-WO$_3$-250, (c) 8Ti-WO$_3$-250, (d) 12Ti-WO$_3$-250, (e) 16Ti-WO$_3$-250, and (f) 20Ti-WO$_3$-250, respectively.
Figure S9. In-situ UV-Visible transmittance variations for (a) 0Ti-WO$_3$-350, (b) 4Ti-WO$_3$-350, (c) 8Ti-WO$_3$-350, (d) 12Ti-WO$_3$-350, (e) 16Ti-WO$_3$-350, and (f) 20Ti-WO$_3$-350, respectively.
Figure S10. In-situ UV-Visible transmittance variations for (a) 0Ti-WO$_3$-400, (b) 4Ti-WO$_3$-400, (c) 8Ti-WO$_3$-400, (d) 12Ti-WO$_3$-400, (e) 16Ti-WO$_3$-400, and (f) 20Ti-WO$_3$-400, respectively.
Figure S11. UV-Visible transmittance spectra of (a) 0Ti-WO₃, (b) 4Ti-WO₃, (c) 8Ti-WO₃, (d) 12Ti-WO₃, (e) 16Ti-WO₃, and (f) 20Ti-WO₃ at the pristine states under different annealing temperatures.
Figure S12. In situ optical response of the WO₃ films for 60 s per step measured at 550 nm annealed at (a) 200, (b) 250, (c) 300, (d) 350, and (e) 400 °C.
Figure S13. Optical density variation with respect to the charge density of WO$_3$ films annealed at (a) 200, (b) 250, (c) 300, (d) 350, and (e) 400 °C.
Figure S14. In-situ transmittance variation at $\lambda=550$ nm during cyclic tests for 8Ti-, 16Ti- and 20Ti-WO$_3$-films from left to right annealed at 200 (1st row), 250 (2nd row), 350 (3rd row) and 400 °C (4th row).