Uracil derivatives as HIV-1 capsid protein inhibitors: Design, *in silico*, *in vitro* and cytotoxicity studies

Deepthi Ramesh^a, Amaresh Kumar Mohanty^b[†], Anirban De^a[†], Balaji Gowrivel Vijayakumar^a, Aiswarya Sethumadhavan^c, Suresh Kumar Muthuvel^b, Maheswaran Mani^c, Tharanikkarasu Kannan^{a*}

^a Department of Chemistry, Pondicherry University, Kalapet, Puducherry-605014, India.

^b Department of Bioinformatics, Pondicherry University, Kalapet, Puducherry-605014, India

^c Department of Microbiology, Pondicherry University, Kalapet, Puducherry-605014, India.

† denotes equal contribution

*Correspondence

Prof. K. Tharanikkarasu

Department of Chemistry, Pondicherry University, Kalapet, Puducherry-605014, India Email: <u>tharani.che@pondiuni.edu.in</u>

Tel: +91-413-265 4411; Fax: +91-413-265 6740.

Contents

- A. Table S1: Physicochemical properties of bis(pyrimidine-2,4(1*H*,3*H*)-diones.
- B. Table S2: ADMET properties of bis(pyrimidine-2,4(1*H*,3*H*)-diones.
- C. Fig.S1. Boiled egg diagram of compounds 1a to 28a.
- D. Table S2. Optimization of reaction conditions.
- E. Yield and Spectroscopic data (Mass, ¹H and ¹³C NMR, and FT-IR) of compounds.
- F. Table S3. XRD data of intermediate compound 1.
- G. Spectra (Mass, ¹H and ¹³C NMR, and FT-IR) of compounds from 1a to 28a.
- H. Fig. S2. 2D interaction diagram of compounds 1a to 28a.
- I. Table S5. Percentage inhibition of bis(pyrimidine-2,4(1H,3H)-diones on HIV-1 p24 antigen production at $1 \mu g/ml$.
- J. Table S6. Inhibition of p24 of HIV-1C by bis(pyrimidine-2,4(1*H*,3*H*)-diones. Azidothymidine (AZT) was used as positive control and virus control was 1×10^4 PFU/ml.
- K. Experimental procedure for cytotoxicity studies

		Lipir	Veber's Rule				
Code	Log P	Mol. Wt (g/mol)	HD*	HA [#]	No. of violations	TPSA (Å ²)	No. of rotatable bonds
1a	-0.61	312.28	4	8	0	131.45	3
2a	-0.45	330.27	4	8	0	131.45	3
3 a	-0.47	330.27	4	8	0	131.45	3
4a	-0.49	330.27	4	8	0	131.45	3
5a	-0.35	348.26	4	8	0	131.45	3
6a	0.28	380.28	4	8	0	131.45	4
7a	0.26	380.28	4	8	0	131.45	4
8a	0.07	346.73	4	8	0	131.45	3
9a	0.04	346.73	4	8	0	131.45	3
10a	0.02	346.73	4	8	0	131.45	3
11a	0.67	381.18	4	8	0	131.45	3
12a	0.20	391.18	4	8	0	131.45	3
13a	0.15	391.18	4	8	0	131.45	3
14a	-0.65	357.28	4	11	1	177.27	4
15a	-0.68	357.28	4	11	1	177.27	4
16a	-0.85	337.30	4	9	0	155.24	3
1 7 a	-0.88	337.30	4	9	0	155.24	3
18a	-0.16	326.31	4	8	0	131.45	3
19a	-0.21	326.31	4	8	0	131.45	3
20a	-0.51	355.35	4	9	0	134.69	4
21a	-0.55	342.31	4	9	0	140.68	4
22a	-0.96	372.34	4	10	0	149.92	5
23a	-0.98	402.36	4	11	1	159.15	6
24a	1.14	404.38	4	9	0	140.68	5
25a	-0.70	356.29	5	10	0	168.75	4

A. Table S1: Physicochemical properties of bis(pyrimidine-2,4(1*H*,3*H*)-diones.

26a	-0.82	340.30	4	9	0	148.52	4
27a	-3.18	546.46	8	16	3	262.90	6
28a	0.55	362.35	4	8	0	131.45	3
Azidothy midine	-0.10	267.25	2	9	0	134.08	3
CAP-1	4.10	367.90	2	5	0	57.50	7
C1	5.95	525.01	2	8	2	99.41	8
PF74	4.43	425.53	2	5	0	65.20	7

HD: hydrogen donor; HA: hydrogen acceptor.

Note: Data obtained from the Molinspiration server (http://www.molinspiration.com

Code	Absorption			Distribution		ion	Metabolism	Excretion	Toxicity	
	Log S (log mol/L)	Caco-2 perm. (log Papp in 10 ⁻⁶ cm/s)	Int. abs. (% Abs.)	VD (log L/kg)	Fract. Unb (Fu)	BBB perm (log BB)		Total clearance(lo gml/min/kg)	Oral Rat Acute Toxicity (LD50) mol/kg	Hepato toxicity
1 a	-3.153	-0.487	69.75	-0.086	0.294	-1.134	CYP3A4 substrate, CYP1A2 inhibitor	0.848	2.959	No
2a	-3.047	-0.465	70.167	0.106	0.229	-1.34	CYP3A4 substrate	0.702	2.883	No
3a	-3.038	-0.46	76.187	0.141	0.209	-1.30	CYP3A4 substrate	0.717	2.851	No
4 a	-3.119	-0.441	78.79	-0.08	0.22	-1.31	CYP3A4 substrate	0.701	2.913	No
5a	-3.028	-0.448	80.32	0.157	0.191	-1.473	CYP3A4 substrate	0.692	2.772	Yes
6a	-3.184	-0.497	72.06	-0.019	0.252	-1.445	CYP3A4 substrate	0.52	2.94	Yes
7a	-3.19	-0.466	72.07	-0.024	0.242	-1.426	CYP3A4 substrate	0.531	2.92	Yes
8a	-3.185	-0.513	70.929	-0.033	0.272	-1.316	CYP3A4 substrate	-0.478	2.96	No
9a	-3.18	-0.516	70.941	-0.016	0.269	-1.294	CYP3A4 substrate	-0.473	2.95	No
10a	-3.187	-0.472	70.78	-0.123	0.245	-1.309	CYP3A4 substrate, CYP1A2 inhibitor	-0.41	2.95	No
11a	-3.218	-0.508	71.957	-0.081	0.268	-1.482	CYP3A4 substrate, CYP1A2 inhibitor	-0.485	2.95	No

B. Table S2: ADMET properties of bis(pyrimidine-2,4(1*H*,3*H*)-diones

12a	-3.191	-0.507	70.665	-0.023	0.269	-1.336	CYP3A4 substrate, CYP1A2 inhibitor	0.499	2.97	No
13 a	-3.193	-0.466	70.516	-0.113	0.242	-1.33	CYP3A4 substrate, CYP1A2 inhibitor	0.433	2.955	No
14a	-3.171	-0.163	66.595	-0.305	0.176	1.338	CYP3A4 substrate	0.811	3.08	Yes
15a	-3.171	0.163	66.576	-0.319	0.171	-1.322	CYP3A4 substrate	0.821	3.076	Yes
16a	-3.125	0.064	67.403	0.009	0.283	-1.198	CYP3A4 substrate	0.891	2.909	No
17a	-3.13	0.034	67.38	0.043	0.283	-1.174	CYP3A4 substrate	0.9	2.9	No
18a	-3.177	-0.511	70.221	0.011	0.285	-1.162	CYP3A4 substrate, CYP1A2 inhibitor	0.85	2.97	No
19a	-3.178	-0.469	70.072	-0.078	0.257	-1.156	CYP3A4 substrate, CYP1A2 inhibitor	0.865	2.96	No
20a	-3.159	-0.471	67.338	0.12	0.287	-1.189	CYP3A4 substrate	0.932	2.96	Yes
21a	-3.032	0.078	68.263	0.234	0.248	-1.327	CYP3A4 substrate	0.831	2.86	No
22a	-2.979	0.106	70.597	0.433	0.225	-1.464	CYP3A4 substrate	0.819	2.66	No
23a	-2.972	0.03	70.668	0.364	0.213	-1.609	CYP3A4 substrate	0.901	2.52	Yes
24a	-3.246	-0.073	77.440	-0.756	0.05	-1.379	CYP3A4 substrate, CYP1A2 inhibitor	0.788	3.22	Yes
25a	-2.954	-0.883	42.063	-0.546	0.198	-1.538	-	0.842	2.917	Yes
26a	-3.036	0.074	67.461	0.148	0.25	-1.311	CYP3A4 substrate	0.787	1.45	Yes
27a	-2.89	0.279	46.5	-0.514	0.189	-2.235	CYP3A4 substrate	0.885	2.536	No

28a	-3.199	-0.488	76.828	0.823	0.1	1.177	CYP3A4 substrate, CYP1A2 inhibitor	0.807	3.31	No
AZT	-3.204	-0.11	69.077	-0.423	0.738	-1.21	-	0.048	0.048	Yes
CAP-1	-5.442	1.093	89.96	-0.061	0.225	-0.085	CYP1A2, CYP2C9 inhibitor	0.157	2.796	No
C1	-2.896	0.473	76.399	0.065	0.269	-1.397	CYP3A4 substrate, CYP1A2 and CYP2C9 inhibitor	0.368	2.478	Yes
PF74	-3.701	0.676	93.597	0.014	0.105	-0.24	CYP2D6, CYP3A4 substrate, CYP1A2, CYP2C19, CYP2C9, CYP3A4 inhibitor	0.618	2.24	Yes

C. Fig. S1 Human intestinal absorption (HIA) model and blood-brain barrier permeation (BBB) method (boiled-egg plot) of the 28 compounds. The Boiled-egg model works by computing the lipophilicity and polarity of small molecules. Here, all the compounds are highly absorbable in the gastrointestinal tract and is BBB impermeable. (Calculated from http://www.swissadme.ch/)

D. Table S2. Optimization of reaction conditions

Run No.	Catalyst	Solvent	Temp (°C)	Time (h)	Yield (%)
1.		H ₂ O	RT to 100	24	
2.	Glacial acetic acid	МеОН	RT to 70	24	
3.		EtOH	RT to 70	24	NR
4.		DCM	RT	24	
5.		Acetonitrile	RT to 80	24	

6.		DMSO		24		
7.		H ₂ O	RT to 100	24		
8.	•	МеОН	RT to 70	24		
9.	H ₂ SO ₄	EtOH	RT to 70	24	NR	
10.	2~ - +	DCM	RT	24		
11.	1	Acetonitrile	RT to 80	24		
12.		DMSO	RT to 180	24		
13.		H ₂ O	RT	18	80	
14.			70	6	90	
15.		МеОН	RT to 70	24		
16.	HCl	EtOH	RT to 70	24		
17.		DCM	RT	24	NR	
18.		Acetonitrile	RT to 80	24		
19.		DMSO	RT to 180	24		

NR denotes no reaction

E. Yield and Spectroscopic data (Mass, ¹H and ¹³C NMR, and FT-IR) of compounds

5,5'-(*Phenylmethylene*)*bis*(*pyrimidine-2,4*(*1H*,*3H*)-*dione*) (**1a**), White powder, Yield: 85 %, ¹H NMR (400 MHz, DMSO-d6) δ : 11.13 (s, 2H), 10.74 (d, *J* = 5.3 Hz, 2H), 7.31 (t, *J* = 7.4 Hz, 2H), 7.22 (t, *J* = 7.2 Hz, 1H), 7.14 (d, *J* = 7.3 Hz, 2H), 6.76 (d, *J* = 5.7 Hz, 2H), 5.01 (s, 1H). ¹³C NMR (101 MHz, DMSO-d6) δ 163.80 (s), 151.42 (s), 140.42 (s), 139.68 (s), 128.66 (d, *J* = 6.5 Hz), 127.77 – 126.92 (m), 113.47 (s). FT-IR (KBr, cm⁻¹): 3480.67 (-NH stretching), 3119.10 (C-H stretching), 1716.53 (C=O stretching), 1640.36 (C=C stretching). ESI-HRMS calculated for C₁₅H₁₂N₄O₄ [M+H]⁺: 313.0937, obtained value: 313.0928.

5,5'-((4-Fluorophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (2a), White powder, Yield: 90 %, ¹H NMR (400 MHz, DMSO-d6) δ: 11.12 (s, 2H), 10.72 (s, 2H), 7.15 (d, *J* = 28.0 Hz, 4H), 6.80 (s, 2H), 5.01 (s, 1H). ¹³C NMR (101 MHz, DMSO-d6) δ: 163.69 (s), 160.03 (s), 151.35 (s), 139.68 (s), 136.56 (s), 130.42 (s), 115.05 (s), 113.26 (s), 40.23 – 38.74 (m), 38.39 (s). FT-IR (KBr, cm⁻¹): 3501.28 (N-H stretching), 3237.76 (CH stretching), 1715.59 (C=O stretching), 1635.73 (C=C stretching), 1431.40 (C-F stretching). ESI-HRMS calculated for C₁₅H₁₁FN₄O₄ [M+H]⁺: 331.0842, obtained value: 331.0852.

5,5'-((3-Fluorophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (**3a**), White powder, Yield: 90 %, ¹H NMR (400 MHz, DMSO-d6) δ : 11.14 (s, 2H), 10.75 (d, *J* = 4.5 Hz, 2H), 7.34 (d, *J* = 6.6 Hz, 1H), 7.02 (t, *J* = 11.1 Hz, 3H), 6.83 (d, *J* = 5.5 Hz, 2H), 5.03 (s, 1H). ¹³C NMR (101 MHz, DMSO-d6) δ : 163.67 (s), 161.08 (s), 150.92 (s), 143.61 (s), 139.87 (s), 130.62 (s), 124.90 (s), 112.74 (s), 40.1 (s), 40.13 (s), 39.93 (s), 39.61 (d, *J* = 21.0 Hz), 39.20 (d, *J* = 21.0 Hz), 38.89 (s), 38.24 (s). FT-IR (KBr, cm⁻¹): 3467.40 (N-H stretching), 3111.20 (CH stretching), 1711.90 (C=O stretching), 1656.20 (C=C stretching), 1436.70 (CF stretching). ESI-HRMS calculated for C₁₅H₁₁FN₄O₄[M+H]⁺: 331.0842, obtained value: 331.0852.

5,5'-((2-Fluorophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (4a), Light yellow powder, Yield: 85 %, ¹H NMR (400 MHz, DMSO-d6) δ : 11.18 (s, 2H), 10.77 (s, 2H), 7.30 (s, 1H), 7.14 (s, 3H), 6.80 (s, 2H), 5.26 (s, 1H). ¹³C NMR (101 MHz, DMSO-d6) δ : 163.68 (s), 161.25 (s), 158.82 (s), 151.44 (s), 139.76 (s), 129.69 (s), 129.10 (s), 127.62 – 127.54 (m), 127.48 (s), 124.54 (s), 115.68 (d, *J* = 22.2 Hz), 111.88 (s), 40.25 (s), 40.24 – 39.58 (m), 39.74 (s), 39.85 – 39.21 (m), 39.32 (s), 39.32 (s), 39.01 (d, *J* = 21.1 Hz), 32.02 (s). FT-IR (KBr, cm⁻¹): 3467.40 (N-H stretching), 3120.80 (CH stretching), 1722.80 (C=O stretching), 1645.0 (C=C stretching), 1488.70 (CF stretching). ESI-HRMS calculated for C₁₅H₁₁FN₄O₄ [M+H]⁺: 331.0842, obtained value: 331.0821.

6,6'-((3,5-Difluorophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (**5a**), White powder, Yield: 85 %, ¹H NMR (400 MHz, DMSO-d6) δ: 11.16 (s, 1H), 11.02 (s, 1H), 10.88 (d, *J* = 19.0 Hz, 2H), 7.38 (dd, *J* = 7.4, 5.9 Hz, 1H), 7.31 (t, *J* = 5.5 Hz, 1H), 7.05 (s, 2H), 6.93 – 6.87 (m, 1H), 5.48 (s, 1H). ¹³C NMR (101 MHz, DMSO-d6) δ: 164.71 (s), 163.58 (d, *J* = 33.6 Hz), 151.74 (s), 151.34 (d, J = 8.1 Hz), 142.48 (s), 140.25 (s), 138.81 (s), 115.26 (s), 112.19 (s), 109.68 (s), 100.45 (s), 56.80 (s), 40.20 (s), 40.19 – 39.53 (m), 39.54 (s), 39.64 – 39.10 (m), 39.10 – 38.99 (m), 38.90 (s). FT-IR (KBr, cm⁻¹): 3422.60 (N-H stretching), 3108.60 (CH stretching), 1716.70 (C=O stretching), 1669.30 (C=C stretching), 1447.40 (C-F stretching). ESI-HRMS calculated for C₁₅H₁₀F₂N₄O₄ [M+H]⁺: 349.0748, obtained value: 349.0720.

5,5'-((4-(*Trifluoromethyl*)*phenyl*)*methylene*)*bis*(*pyrimidine-2*,4(*1H*,3*H*)-*dione*) (**6a**), Pale yellow powder, Yield: 88 %, ¹H NMR (400 MHz, DMSO-d6) δ : 11.11 (d, *J* = 59.5 Hz, 2H), 10.80 (s, 2H), 7.65 (d, *J* = 8.0 Hz, 2H), 7.39 (d, *J* = 7.6 Hz, 2H), 6.86 (s, 1H), 5.45 (d, *J* = 7.6 Hz, 1H), 5.09 (s, 1H).¹³C NMR (101 MHz, DMSO-d6) δ : 164.58 (s), 163.72 (s), 151.70 (s), 151.34 (s), 145.69 (s), 142.39 (s), 129.38 (s), 125.34 (s), 112.46 (s), 100.39 (s). FT-IR (KBr, cm⁻¹): 3432.4 (N-H stretching), 3179.6 (CH stretching), 1716.50 (C=O stretching), 1660.90 (C=C stretching), 1327.60 (CF stretching). ESI-HRMS calculated for C₁₆H₁₁F₃N₄O₄ [M+H]⁺: 381.0810, obtained value: 381.0792.

5,5'-((3-(Trifluoromethyl)phenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (7a), Yellow powder, Yield: 80 %, ¹H NMR (400 MHz, DMSO-d6) δ : 11.12 (s, 2H), 10.94 (s, 2H), 7.67 (s, 1H), 7.58 (d, *J* = 22.6 Hz, 4H), 7.31 (s, 1H), 5.21 (s, 1H).). ¹³C NMR (101 MHz, DMSO-d6) δ : 162.86 (s), 150.88 (s), 142.02 (s), 138.85 (s), 130.72 (s), 129.18 (s), 124.11 (s), 112.11 (s), 76.67 (s), 56.46 (s), 39.53 (s). FT-IR (KBr, cm⁻¹): 3229.0 (N-H stretching), 2828.8 (CH stretching), 1715.50 (C=O stretching), 1673.70 (C=C stretching), 1331.60 (CF stretching). ESI-HRMS calculated for C₁₆H₁₁F₃N₄O₄ [M+H]⁺: 380.0732, obtained value: 380.0782.

5,5'-((4-Chlorophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (8a), White powder, Yield: 85 %, ¹H NMR (400 MHz, DMSO-d6) δ : 11.13 (s, 2H), 10.73 (s, 2H), 7.27 (d, 4H), 6.82 (s, 2H), 5.00 (s, 1H). ¹³C NMR (101 MHz, DMSO-d6) δ : 163.59 (s), 151.24 (s), 139.69 (d, *J* = 13.6 Hz), 131.22 (s), 130.36 (s), 128.34 (s), 112.78 (s), 40.15 (s), 39.94 (s), 39.63 (d, *J* = 21.0 Hz), 39.31 (s), 39.10 (s), 38.90 (s), 38.48 (s). FT-IR (KBr, cm⁻¹): 3433.30 (N-H stretching), 3179.30 (CH stretching), 1725.20 (C=O stretching), 1640.60 (C=C stretching), 822.40 (C-Cl stretching). ESI-HRMS calculated for $C_{15}H_{11}ClN_4O_4$ [M+H]⁺: 347.0547, obtained value: 347.0526.

5,5'-((3-Chlorophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (9a), White powder, Yield: 82%, ¹H NMR (400 MHz, DMSO-d6) δ 11.15 (s, 2H), 10.75 (d, *J* = 5.0 Hz, 2H), 7.30 (dd, *J* = 14.8, 7.7 Hz, 2H), 7.21 (s, 1H), 7.13 (d, *J* = 7.2 Hz, 1H), 6.85 (d, *J* = 5.7 Hz, 2H), 5.01 (s, 1H).¹³C NMR (101 MHz, DMSO-d6) δ : 163.60 (s), 151.25 (s), 143.25 (s), 139.92 (s), 133.13 (s), 130.29 (s), 128.20 (s), 127.29 (s), 126.72 (s), 112.52 (s), 39.52 (dp, *J* = 42.0, 21.0 Hz), 38.81 (s). FT-IR (KBr, cm⁻¹): 3548.86 (N-H stretching), 3118.08 (CH stretching), 1718.09 (C=O stretching), 1664.30 (C=C stretching), 878.62 (C-Cl stretching). ESI-HRMS calculated for C₁₅H₁₁ClN₄O₄ [M+H]⁺: 347.0547, obtained value: 347.0534.

5,5'-((2-Chlorophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (**10a**), White powder, Yield: 79%, ¹H NMR (400 MHz, DMSO-d6) δ : 11.18 (d, *J* = 1.5 Hz, 2H), 10.76 (dd, *J* = 5.8, 1.5 Hz, 2H), 7.47 – 7.43 (m, 1H), 7.31 – 7.26 (m, 2H), 7.16 (dd, *J* = 5.2, 4.2 Hz, 1H), 6.72 (d, *J* = 5.7 Hz, 2H), 5.32 (s, 1H). ¹³C NMR (101 MHz, DMSO-d6) δ : 163.57 (s), 151.35 (s), 139.78 (s), 138.22 (s), 133.26 (s), 129.89 (s), 129.36 (s), 128.69 (s), 127.27 (s), 111.78 (s), 40.15 (s), 39.94 (s), 39.73 (s), 39.52 (s), 39.31 (s), 39.11 (s), 38.90 (s), 36.12 (s). FT-IR (KBr, cm⁻¹): 3227.69 (N-H stretching), 3060.06 (CH stretching), 1711.75 (C=O stretching), 1664.56 (C=C stretching), 895.15 (C-Cl stretching). ESI-HRMS calculated for C₁₅H₁₁ClN₄O₄ [M+H]⁺: 347.0547, obtained value: 347.0537.

5,5'-((2,4-Dichlorophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (**11a**), Pink powder, Yield: 75%, ¹H NMR (400 MHz, DMSO-d6) δ: 11.12 (s, 2H), 10.86 (s, 2H), 7.60 – 7.48 (m, 2H), 7.45 – 7.33 (m, 2H), 7.00 (d, *J* = 5.4 Hz, 1H), 5.74 (s, 1H), 5.51 – 5.22 (m, 1H). ¹³C NMR (101 MHz, DMSO-d6) δ: 164.60 (s), 163.26 (s), 151.67 (s), 151.26 (s), 142.41 (s), 139.80 (s), 139.10 (s), 132.72 (d, *J* = 38.6 Hz), 129.99 (s), 128.72 (s), 127.31 (s), 114.35 (s), 100.39 (s), 64.13 (s), 40.04 (d, J = 21.0 Hz), 39.88 – 39.29 (m), 39.29 – 39.26 (m), 39.10 (s), 38.92 (s), 38.90 (s). FT-IR (KBr, cm⁻¹): 3224.39 (N-H stretching), 3085.80 (CH stretching), 1710.40 (C=O stretching), 1669.30 (C=C stretching), 862.70 (C-Cl stretching). ESI-HRMS calculated for C₁₅H₁₀Cl₂N₄O₄ [M+H]⁺: 381.0157, obtained value: 381.0172.

5,5'-((4-Bromophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (12a), White powder, Yield: 90 %, ¹H NMR (400 MHz, DMSO-d6) δ : 11.15 (s, 2H), 10.75 (d, J = 4.9 Hz, 2H), 7.48 (d, J = 8.3 Hz, 2H), 7.11 (d, J = 8.3 Hz, 2H), 6.81 (d, J = 5.8 Hz, 2H), 4.97 (s, 1H).¹³C NMR (101 MHz, DMSO-d6) δ : 163.72 (s), 151.37 (s), 139.99 (d, J = 21.3 Hz), 131.42 (s), 130.86 (s), 119.87 (s), 112.85 (s), 39.52 (dp, J = 42.0, 21.0 Hz), 38.66 (s). FT-IR (KBr, cm⁻¹): 3544.32 (N-H stretching), 3107.78 (CH stretching), 1722.18 (C=O stretching), 1663.19 (C=C stretching), 556.33 (C-Br stretching). ESI-HRMS calculated for C₁₅H₁₁BrN₄O₄ [M+H]⁺: 391.0042, obtained value: 391.0014.

5,5'-((2-Bromophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (13a), White powder, Yield: 85 %, ¹H NMR (400 MHz, DMSO-d6) δ : 11.19 (d, *J* = 15.3 Hz, 2H), 10.74 (d, *J* = 3.0 Hz, 2H), 7.72 – 7.48 (m, 2H), 7.35 (t, *J* = 17.0 Hz, 1H), 7.24 – 7.12 (m, 2H), 6.68 (d, *J* = 4.6 Hz, 1H), 5.27 (s, 1H).¹³C NMR (101 MHz, DMSO-d6) δ : 163.40 (s), 151.21 (s), 139.67 (s), 133.12 (s), 129.78 – 129.27 (m), 128.76 – 128.37 (m), 127.62 – 127.11 (m), 124.43 (s), 111.77 – 111.14 (m), 40.20 – 38.80 (m), 38.71 (s). FT-IR (KBr, cm⁻¹): 3222.59 (N-H stretching), 3029.96 (CH stretching), 1712.69 (C=O stretching), 1680.18 (C=C stretching), 587.90 (C-Br stretching). ESI-HRMS calculated for C₁₅H₁₁BrN₄O₄ [M+H]⁺: 391.0042, obtained value: 391.0033.

5,5'-((4-Nitrophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (14a), Yellow powder, Yield: 85 %, ¹H NMR (400 MHz, DMSO-d6) δ: 11.41 (s, 1H), 11.27 (d, *J* = 4.4 Hz, 1H), 9.56 (s, 1H), 9.28 (s, 1H), 8.21 (d, *J* = 8.3 Hz, 3H), 7.80 (d, *J* = 8.2 Hz, 2H), 7.76 (d, *J* = 5.4 Hz, 1H), 6.57 (s, 1H).¹³C NMR (101 MHz, DMSO-d6) δ: 163.36 (s), 151.93 (s), 151.28 (s), 146.64

13

(s), 138.83 (s), 127.84 (s), 123.40 (s), 115.30 (s), 67.12 (s), 40.15 (s). FT-IR (KBr, cm⁻¹): 3328.47 (NH stretching), 3110.31 (C-H stretching), 1812.70 (C=O stretching), 1630.10 (C=C stretching), 1516.84 (N-O stretching), 1230.29 (C-N stretching). ESI-HRMS calculated for C₁₅H₁₁N₅O₆ [M+H]+: 358.0787, obtained value: 358.0795.

5,5'-((3-Nitrophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (**15a**) White powder, Yield: 80 %, ¹H NMR (400 MHz, DMSO-d6) δ : 11.45 (s, 1H), 11.27 (s, 1H), 9.54 (s, 1H), 9.26 (s, 1H), 8.42 (s, 1H), 8.18 (s, 1H), 8.04 (d, J = 40.6 Hz, 1H), 7.83 – 7.61 (m, 3H), 6.57 (s, 1H). ¹³C NMR (101 MHz, DMSO-d6) δ : 168.04 (s), 164.80 – 163.59 (m), 150.82 (s), 147.83 (s), 140.61 (s), 134.56 (s), 130.30 (s), 122.86 (d, J = 39.2 Hz), 109.22 (s), 45.27 (s), 40.04 (d, J =21.0 Hz), 41.56 – 39.62 (m), 39.83 (dd, J = 42.0, 20.9 Hz), 41.56 – 37.79 (m). FT-IR (KBr, cm⁻¹): 3439.00 (NH stretching), 2916.92 (C-H stretching), 1717.97 (C=O stretching), 1582.21 (N-O stretching), 1246.48 (C-N stretching). ESI-HRMS calculated for C₁₅H₁₁N₅O₆ [M+H]⁺: 358.0787, obtained value: 358.0790.

4-(*Bis*(2,4-*dioxo*-1,2,3,4-*tetrahydropyrimidin*-5-*yl*)*methyl*)*benzonitrile* (**16a**) White powder, Yield: 86 %, ¹H NMR (400 MHz, DMSO-d6) δ: 11.14 (s, 2H), 10.77 (d, J = 4.9 Hz, 2H), 7.87 (d, J = 8.1 Hz, 2H), 7.28 (d, J = 8.1 Hz, 2H), 6.83 (d, J = 5.8 Hz, 2H), 5.08 (s, 1H). ¹³C NMR (101 MHz, DMSO-d6) δ: 167.22 (s), 163.62 (s), 151.23 (s), 145.90 (s), 139.90 (s), 129.50 (s), 129.18 (s), 128.67 (s), 112.59 (s), 40.44 – 39.70 (m), 39.53 (s), 39.53 (s), 39.42 (d, J = 21.0 Hz), 39.11 (s), 38.99 – 38.84 (m). FT-IR (KBr, cm⁻¹): 3567.94 (N-H stretching), 3114.96 (CH stretching), 2350.94 (nitrile stretching), 1730.61 (C=O stretching), 1665.20 (C=C stretching). ESI-HRMS calculated for C₁₆H₁₁N₅O₄.H₂O [M+H]⁺: 355.0917, obtained value: 355.0702.

3-(*Bis*(2,4-*dioxo*-1,2,3,4-*tetrahydropyrimidin*-5-*yl*)*methyl*)*benzonitrile* (**17a**) White powder, Yield: 82 %, ¹H NMR (400 MHz, DMSO-d6) δ: 11.16 (d, *J* = 1.4 Hz, 2H), 10.76 (dd, *J* = 5.7, 1.4 Hz, 2H), 7.84 – 7.78 (m, 1H), 7.67 (s, 1H), 7.47 – 7.41 (m, 2H), 6.85 (d, *J* = 5.7 Hz, 2H), 5.07 (s, 1H). ¹³C NMR (101 MHz, DMSO-d6) δ: 167.41 (s), 163.69 (s), 151.31 (s), 141.15 (s), 139.95 (s), 133.21 (s), 130.94 (s), 128.95 (d, J = 9.7 Hz), 127.79 (s), 112.82 (s), 40.15 (s), 39.94 (s), 39.73 (s), 39.52 (s), 39.31 (s), 39.10 (s), 39.21 – 38.66 (m), 38.89 (s). FT-IR (KBr, cm⁻¹): 3556.89 (N-H stretching), 3251.532 (CH stretching), 2560.14 (nitrile stretching), 1735.49 (C=O stretching), 1425.97 (C=C stretching). ESI-HRMS calculated for C₁₆H₁₁N₅O₄.H₂O [M+H]⁺: 355.0917, obtained value: 355.0702

5,5'-(P-tolylmethylene)bis(pyrimidine-2,4(1H,3H)-dione) (18a), White powder, Yield: 80 %, ¹H NMR (400 MHz, DMSO-d6) δ : 11.11 (s, 2H), 10.69 (s, 2H), 7.07 (d, J = 31.9 Hz, 4H), 6.75 (s, 2H), 4.96 (s, 1H), 2.26 (s, 3H). ¹³C NMR (101 MHz, DMSO-d6) δ : 163.48 (s), 151.14 (s), 139.24 (s), 137.18 (s), 135.59 (s), 128.94 (s), 128.28 (s), 113.32 (s), 40.67 – 40.23 (m), 39.92 (d, J = 21.2 Hz), 39.73 – 39.05 (m), 39.19 (s), 39.39 – 38.61 (m), 38.39 (s), 20.52 (s). FT-IR (KBr, cm⁻¹): 3412.70 (N-H stretching), 3181.50 (CH stretching), 2915.7 (C-CH₃ stretching), 1722.40 (C=O stretching), 1640.80 (C=C stretching), 1485.50 (-CH₃ stretching). ESI-HRMS calculated for C₁₆H₁₄N₄O₄ [M+H]+: 327.1093, obtained value: 327.1100.

5,5'-(*O*-tolylmethylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione) (**19a**), White powder, Yield: 72 %, ¹H NMR (400 MHz, DMSd6) δ : 11.14 (s, 2H), 10.71 (d, *J* = 3.5 Hz, 2H), 7.16 (d, *J* = 13.3 Hz, 3H), 6.98 (s, 1H), 6.69 (d, *J* = 5.0 Hz, 2H), 5.14 (s, 1H), 2.17 (s, 3H). ¹³C NMR (101 MHz, DMSO-d6) δ : 163.55 (s), 151.18 (s), 139.24 (s), 138.62 (s), 135.72 (s), 130.50 (s), 126.96 (s), 126.60 (s), 125.78 (s), 112.45 (s), 39.85 (d, *J* = 21.0 Hz), 39.74 – 39.64 (m), 39.57 (s), 39.43 (d, *J* = 21.0 Hz), 39.28 – 39.22 (m), 39.12 (s), 38.81 (d, *J* = 21.1 Hz), 34.89 (s), 18.79 (s). FT-IR (KBr, cm⁻¹): 3505.20 (N-H stretching), 3181.40 (CH stretching), 2913.20 (C-CH₃ stretching), 1720.30 (C=O stretching), 1643.90 (C=C stretching), 1489.70 (-CH₃ stretching). ESI-HRMS calculated for C₁₆H₁₄N₄O₄ [M+H]⁺: 327.1093, obtained value: 327.1064.

5,5'-((4-(Dimethylamino)phenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (20a), Light brown powder, Yield: 85 %, ¹H NMR (400 MHz, DMSO-d6) δ : 11.13 (s, 2H), 10.71 (s, 2H), 6.99 (s, 2H), 6.76 (d, J = 22.1 Hz, 4H), 4.95 (s, 1H), 2.91 (s, 6H). ¹³C NMR (101 MHz, DMSO-

d6) δ : 163.66 (s), 151.34 (s), 149.32 (s), 139.03 (s), 129.07 (s), 127.39 (s), 114.08 (s), 112.61 (s), 40.32 (s), 40.32 – 39.92 (m), 39.94 (s), 39.73 (s), 39.92 – 39.31 (m), 39.32 (s), 39.21 (d, J = 21.0 Hz), 38.90 (s), 37.99 (s). FT-IR (KBr, cm⁻¹): 3416.30 (N-H stretching), 3237.70 (CH stretching), 3114.80 (N-CH₃ stretching), 1707.10 (C=O stretching), 1669.70 (C=C stretching), 1485.30 (methyl stretching). ESI-HRMS calculated for C₁₇H₁₇N₅O₄ [M+H]⁺: 356.1359, obtained value: 356.1366.

6,6'-((4-Methoxyphenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (21a), Light brown powder, Yield: 90 %, ¹H NMR (400 MHz, DMSO-d6) δ : 11.09 (s, 3H), 9.86 (s, 1H), 7.09 (dd, J = 27.0, 8.5 Hz, 1H), 6.93 (d, J = 8.6 Hz, 1H), 6.85 (dd, J = 19.1, 8.6 Hz, 2H), 6.75 (s, 1H), 6.65 (d, J = 19.5 Hz, 1H), 4.95 (s, 1H), 3.73 – 3.67 (m, 3H). ¹³C NMR (101 MHz, DMSO-d6) δ : 163.74 (s), 151.46 (s), 139.45 (s), 132.07 (s), 129.81 (s), 114.72 (s), 113.81 (s), 55.51 (d, J = 74.1 Hz), 40.15 (s), 39.94 (s), 39.80 – 39.23 (m), 39.23 – 39.17 (m), 39.00 (d, J = 20.9 Hz), 38.84 – 38.56 (m). FT-IR (KBr, cm⁻¹): 3459.50 (N-H stretching), 3174.90 (CH stretching), 2831.30 (OCH₃ stretching), 1711.90 (C=O stretching), 1666.50 (C=C stretching). ESI-HRMS calculated for C₁₆H₁₄N₄O₅ [M+H]⁺: 343.1042, obtained value: 343.1039.

5,5'-((3,4-Dimethoxyphenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (22a), Brown powder, Yield: 88 %, ¹H NMR (400 MHz, DMSO-d6) δ : 11.11 (s, 2H), 10.72 (s, 2H), 6.87 (d, J = 8.3 Hz, 1H), 6.78 – 6.71 (m, 3H), 6.60 (d, J = 8.2 Hz, 1H), 4.94 (s, 1H), 3.70 (d, J = 5.1Hz, 6H). ¹³C NMR (101 MHz, DMSO-d6) δ : 163.71 (s), 151.37 (s), 148.84 (s), 147.67 (s), 139.36 (s), 132.65 (s), 120.19 – 118.33 (m), 113.67 (s), 112.61 (s), 111.65 (s), 55.60 (s), 40.15 (s), 39.83 (d, J = 21.0 Hz), 39.55 (s), 39.42 (d, J = 21.0 Hz), 39.10 (s), 38.90 (s), 38.51 (s). FT-IR (KBr, cm⁻¹): 3418.30 (N-H stretching), 3223.60 (CH stretching), 2834.60 (OCH₃ stretching), 1712.70 (C=O stretching), 1656.20 (C=C stretching). ESI-HRMS calculated for C₁₇H₁₆N₄O₆ [M+H]⁺: 373.1148, obtained value: 373.1126. 5,5'-((3,4,5-Trimethoxyphenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (23a), Black powder, Yield: 82 %, ¹H NMR (400 MHz, DMSO-d6) δ : 11.10 (s, 2H), 10.71 (s, 2H), 6.75 (dd, *J* = 35.1, 20.1 Hz, 2H), 6.39 (d, *J* = 22.9 Hz, 2H), 4.91 (s, *J* = 17.5 Hz, 1H), 3.71 (s, *J* = 7.7 Hz, 3H), 3.69 (s, 3H), 3.63 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ : 163.53 (s), 152.74 (s), 151.18 (s), 139.36 (s), 126.09 (s), 113.13 (s), 105.73 (s), 60.03 (d, *J* = 24.1 Hz), 55.84 (s), 39.93 (s), 39.76 (s), 39.75 – 39.28 (m), 39.28 – 39.23 (m), 38.99 (d, *J* = 21.0 Hz), 38.82 – 38.76 (m), 38.68 (s). FT-IR (KBr, cm⁻¹): 3421.20 (N-H stretching), 3226.10 (CH stretching), 2835.70 (OCH₃ stretching), 1710.40 (C=O stretching), 1668.0 (C=C stretching). ESI-HRMS calculated for C₁₈H₁₈N₄O₇ [M+H]⁺: 403.1254, obtained value: 403.1268.

5,5'-((4-Phenoxyphenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (24a), Pale yellow powder, Yield: 70 %, ¹H NMR (400 MHz, DMSO-d6) δ : 11.03 (s, 2H), 10.80 (d, *J* = 36.2 Hz, 1H), 9.96 (s, 1H), 7.68 (d, *J* = 7.1 Hz, 1H), 7.62 (d, *J* = 7.8 Hz, 1H), 7.46 – 7.30 (m, 5H), 7.21 (d, *J* = 7.1 Hz, 1H), 7.09 (t, *J* = 9.5 Hz, 2H), 6.95 (dd, *J* = 16.9, 7.8 Hz, 1H), 6.82 (dd, *J* = 14.3, 7.4 Hz, 1H), 5.45 (d, *J* = 7.3 Hz, 1H). ¹³C NMR (101 MHz, DMSO-d6) δ : 164.56 (s), 163.68 (s), 157.82 (s), 156.71 – 155.92 (m), 151.67 (s), 151.35 – 150.69 (m), 143.12 – 142.43 (m), 140.11 – 138.97 (m), 138.04 (s), 131.20 (s), 130.45 (s), 130.17 (s), 124.95 (s), 124.51 (d, *J* = 12.0 Hz), 119.48 (s), 118.66 (s), 117.38 (s), 112.94 (s), 100.37 (s), 40.15 (s), 40.00 (s), 40.00 – 39.44 (m), 39.36 (s), 39.31 (s), 39.11 (s), 38.90 (s). FT-IR (KBr, cm⁻¹): 3384.45 (N-H stretching), 3219.50 (CH stretching), 1712.30 (C=O stretching), 1670.05 (C=C stretching), 1241.50 (C-O-C stretching). ESI-HRMS calculated for C₂₁H₁₆N₄O₅ [M+H]⁺: 405.1199, obtained value: 405.1188.

4-(Bis(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)methyl)benzoic acid (**25a**), Pale violet powder, Yield: 74 %, ¹H NMR (400 MHz, DMSO-d6) δ : 11.15 (s, 2H), 10.76 (s, 2H), 7.87 (s, 2H), 7.28 (s, 2H), 6.83 (s, 2H), 5.07 (s, 1H). ¹³C NMR (101 MHz, DMSO-d6) δ : 167.72 (d, J = 6.4 Hz), 164.03 (s), 163.65 (s), 151.62 (d, J = 7.1 Hz), 149.27 (s), 140.29 (s), 138.65 (s),

17

129.89 (d, J = 9.1 Hz), 129.59 (s), 129.07 (s), 127.06 (s), 116.12 (s), 113.02 (s), 67.58 (s), 40.32 (s), 40.11 (s), 40.11 (s), 39.90 (s), 39.58 (d, J = 21.0 Hz), 39.27 (s), 39.06 (s). FT-IR (KBr, cm⁻¹): 3462.70 (N-H stretching), 3116.0 (CH stretching), 3026.10 (O-H stretching), 1713.50 (C=O stretching), 1655.90 (C=C stretching), 1427.40 (OH bending), 1234.10 (C-OH stretching). ESI-HRMS calculated for C₁₆H₁₂N₄O₆ [M+H]⁺: 357.0835, obtained value: 357.0818.

3-(*Bis*(2,4-*dioxo*-1,2,3,4-*tetrahydropyrimidin*-5-*yl*)*methyl*)*benzaldehyde* (**26a**), White powder, Yield: 85 %, ¹H NMR (400 MHz, DMSO-d6) δ : 11.09 (s, 2H), 10.74 (d, *J* = 4.6 Hz, 2H), 9.98 (s, 1H), 7.78 (d, *J* = 4.8 Hz, 1H), 7.68 (s, 1H), 7.53 (s, 1H), 7.18 -7.0 (s, 1H), 6.87 (d, *J* = 5.7 Hz, 1H), 6.76 (d, *J* = 5.6 Hz, 1H), 4.98 (s, 1H). ¹³C NMR (101 MHz, DMSO-d6) δ : 193.79 (s), 164.02 (d, *J* = 4.5 Hz), 151.61 (d, *J* = 6.0 Hz), 142.27 (s), 140.15 (d, *J* = 50.3 Hz), 136.75 (s), 129.58 (s), 113.64 (s), 112.96 (s), 40.50 (s), 40.18 (d, *J* = 21.0 Hz), 39.94 (s), 39.87 (s), 39.56 (d, *J* = 21.0 Hz), 39.25 (s). FT-IR (KBr, cm⁻¹): 3451.70 (N-H stretching), 3026.3 (CH stretching), 2844.2 (CH aldehyde) 1715.70 (C=O stretching), 1661.0 (C=C stretching). ESI-HRMS calculated for C₁₆H₁₂N₄O₅ [M+H]⁺: 341.0886, obtained value: 341.0877.

6,6'-((3-(Bis(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-

yl)methyl)phenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (**27a**) White powder, Yield: 85 %, ¹H NMR (400 MHz, DMSO-d6) δ : 11.16 (s, 1H), 11.10 (d, *J* = 8.3 Hz, 2H), 10.75 (dd, *J* = 35.7, 5.3 Hz, 4H), 9.98 (s, 1H), 7.77 (d, *J* = 6.4 Hz, 1H), 7.67 (s, 1H), 7.57 – 7.50 (m, 1H), 7.21 (ddd, *J* = 18.4, 13.9, 6.2 Hz, 1H), 7.02 – 6.96 (m, 2H), 6.86 (d, *J* = 5.8 Hz, 1H), 6.76 (d, *J* = 5.8 Hz, 2H), 5.11 (s, 1H), 4.97 (s, 1H). ¹³C NMR (101 MHz, DMSO-d6) δ : 163.66 (s), 151.30 (d, *J* = 3.8 Hz), 139.80 (d, *J* = 50.9 Hz), 139.54 (s), 136.43 (s), 130.41 – 125.61 (m), 113.32 (s), 112.99 (d, *J* = 66.1 Hz), 65.60 (s), 65.83 (s), 40.15 (s), 39.94 (s), 39.73 (s), 39.52 (s), 39.34 – 38.65 (m). FT-IR (KBr, cm⁻¹): 3458.1 (N-H stretching), 3103.1, 3024.8 (CH stretching), 1718.60 (C=O stretching), 1657.50 (C=C stretching). ESI-HRMS calculated for C₂₄H₁₈N₈O₈ [M+H]⁺: 547.1326, obtained value: 547.1320.

6,6'-(*Naphthalen-1-ylmethylene*)*bis*(*pyrimidine-2*,4(1H,3H)-*dione*) (**28a**) Brown powder, Yield: 80 %, ¹H NMR (400 MHz, DMSO-d6) δ : 11.24 (s, 1H), 11.04 (s, 1H), 10.83 (s, 1H), 10.73 (d, *J* = 5.0 Hz, 1H), 8.31 – 8.05 (m, 1H), 7.84 – 7.70 (m, 1H), 7.65 (t, *J* = 7.4 Hz, 1H), 7.53 (t, *J* = 7.9 Hz, 1H), 7.47 – 7.36 (m, 2H), 7.23 (d, *J* = 7.0 Hz, 1H), 6.76 (d, *J* = 5.5 Hz, 1H), 5.46 (d, *J* = 7.5 Hz, 1H). ¹³C NMR (101 MHz, DMSO-d6) δ : 164.55 (s), 163.74 (s), 151.67 (s), 151.36 (s), 142.34 (s), 140.01 (s), 136.96 (s), 135.41 (s), 134.11 – 133.70 (m), 133.43 (s), 129.18 (s), 128.86 (s), 127.08 (s), 125.53 (s), 124.23 (s), 100.37 (s), 40.18 (s), 40.18 – 39.71 (m), 39.52 (s), 39.31 (s), 39.10 (s), 38.90 (s), 34.42 (s). FT-IR (KBr, cm⁻¹): 3480.88 (N-H stretching), 3111.40 (CH stretching), 1715.90 (C=O stretching), 1668.30 (C=C stretching). ESI-HRMS calculated for C₁₉H₁₄N₄O₄ [M+H]⁺: 363.1093, obtained value: 363.1077.

Spectroscopic data of isolated intermediate

5-(Hydroxy(4-nitrophenyl)methyl)pyrimidine-2,4(1H,3H)-dione (1), Yellow powder, Yield: 16 %, ¹H NMR (400 MHz, DMSO-d6) δ : 11.12 (s, 1H), 10.96 (d, *J* = 5.0 Hz, 1H), 8.15 (d, *J* = 8.4 Hz, 2H), 7.62 (d, *J* = 8.6 Hz, 2H), 7.36 (d, *J* = 5.8 Hz, 1H), 5.59 (s, 1H), 4.51 (s, 1H). ¹³C NMR (101 MHz, DMSO-d6) δ : 163.36 (s), 151.93 (s), 151.28 (s), 146.64 (s), 138.83 (s), 127.84 (s), 123.40 (s), 115.30 (s), 67.12 (s), 40.15 (s), 39.83 (d, *J* = 21.1 Hz), 39.57 (s), 39.41 (d, *J* = 21.0 Hz), 38.99 (d, *J* = 21.5 Hz), 38.86 – 38.45 (m). FT-IR (KBr, cm⁻¹): 3729.80 (OH stretching), 3464.20 (-NH stretching), 3225.47 (C-H stretching), 1712.13 (C=O stretching), 1658.55 (C=C stretching), 1348.96 (OH bend). ESI-HRMS for C₁₁H₉N₃O₅ [M+H]⁺: 264.0620, obtained value: 264.0631.

F. Table S3 Single-crystal XRD data of isolated intermediate.

CCDC Number	1946178

Empirical formula	$C_{20}H_{18}N_3O_5$
Formula weight	526.42
Temperature/K	298
Crystal system	monoclinic
Space group	P21/a
a/Å	12.1477(18)
b/Å	7.4576(8)
c/Å	13.8322(19)
α/°	90
β/°	114.653(18)
γ/°	90
Volume/Å ³	1138.9(3)
Z	2
$\rho_{calc}g/cm^3$	1.5350
μ/mm ⁻¹	0.124
F(000)	544.3
Radiation	MoKa (1 ¼ 0.71073)
2⊖ range for data collection/°	6.48 to 58.74
Index ranges	$-13 \le h \le 16, -9 \le k \le 9, -18$
	≤1≤19
Reflections collected	6480
Independent reflections	2654[R(int) = 0.0196]
Goodness-of-fit on F ²	1.072

G. Spectra (Mass, ¹H and ¹³C NMR, and FT-IR) of compounds from 1a to 28a

¹³C NMR spectrum of 5,5'-(phenylmethylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione) (**1a**)

FTIR spectrum of 5,5'-(phenylmethylene)bis(pyrimidine-2,4(1H,3H)-dione) (1a)

Mass spectrum of 5,5'-(phenylmethylene)bis(pyrimidine-2,4(1H,3H)-dione) (1a)

¹H NMR spectrum of 5,5'-((4-fluorophenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione) (2a)

¹³C NMR spectrum of 5,5'-((4-fluorophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione)
(2a)

FTIR spectrum of 5,5'-((4-fluorophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (2a)

Mass spectrum of 5,5'-((4-fluorophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (2a)

¹H NMR spectrum of 5,5'-((3-fluorophenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione) (**3a**)

¹³C NMR spectrum of 5,5'-((3-fluorophenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione) (**3a**)

FTIR spectrum of 5,5'-((3-fluorophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (3a)

Mass spectrum of 5,5'-((3-fluorophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (3a)

¹³C NMR spectrum of 5,5'-((2-fluorophenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione) (4a)

FTIR spectrum of 5,5'-((2-fluorophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (4a)

Mass spectrum of 5,5'-((2-fluorophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (4a)

¹H NMR spectrum of 6,6'-((3,5-difluorophenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione)

(5a)

¹³C NMR spectrum of 6,6'-((3,5-difluorophenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione)

(5a)

FTIR spectrum of 6,6'-((3,5-difluorophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (5a)

Mass spectrum of 6,6'-((3,5-difluorophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (5a)

¹H NMR spectrum of 5,5'-((4-(trifluoromethyl)phenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)dione) (**6a**)

FTIR spectrum of 5,5'-((4-(trifluoromethyl)phenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione) (**6a**)

Mass spectrum of 5,5'-((4-(trifluoromethyl)phenyl)methylene)bis(pyrimidine-2,4(1H,3H)-

dione) (6a)

¹H NMR spectrum of 5,5'-((3-(trifluoromethyl)phenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)dione) (**7a**)

FTIR spectrum of 5,5'-((3-(trifluoromethyl)phenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)dione) (7a)

Mass spectrum of 5,5'-((3-(trifluoromethyl)phenyl)methylene)bis(pyrimidine-2,4(1H,3H)-

dione) (7a)

¹H NMR spectrum of 5,5'-((4-chlorophenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione) (8a)

¹³C NMR spectrum of 5,5'-((4-chlorophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione)

(**8**a)

FTIR spectrum of 5,5'-((4-chlorophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (8a)

Mass spectrum of 5,5'-((4-chlorophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (8a)

¹H NMR spectrum of 5,5'-((3-chlorophenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione) (9a)

 13 C NMR spectrum of 5,5'-((3-chlorophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione)

(**9**a)

FTIR spectrum of 5,5'-((3-chlorophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (9a)

Mass spectrum of 5,5'-((3-chlorophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (9a)

¹H NMR spectrum of 5,5'-((2-chlorophenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione) (10a)

(**10a**)

FTIR spectrum of 5,5'-((2-chlorophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (10a)

Mass spectrum of 5,5'-((2-chlorophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (10a)

¹H NMR spectrum of 5,5'-((2,4-dichlorophenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione)

(**11a**)

¹³C NMR spectrum of 5,5'-((2,4-dichlorophenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione)

(**11a**)

0-35 100 95 · 90 · 1049.6 1182.5 723.3 85 821.8 388 1101.2 761.2 2856.8 80 -2935.8 547.3 1451 75 · % Transmittance 419.4 085.8 70 · 612.6 479.7 1234.) 65 · 60 · 55 50 -45 · 1710.4 40 1669.3 35 · 3500 3000 2500 1500 1000 500 2000 4000 Wavenumbers (cm-1)

Mass spectrum of 5,5'-((2,4-dichlorophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione)

(11a)

 $\label{eq:FTIR} FTIR spectrum of 5,5'-((2,4-dichlorophenyl)methylene) bis(pyrimidine-2,4(1H,3H)-dione)$

¹H NMR spectrum of 5,5'-((4-bromophenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione) (12a)

¹³C NMR spectrum of 5,5'-((4-bromophenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione)

FTIR spectrum of 5,5'-((4-bromophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (12a)

Mass spectrum of 5,5'-((4-bromophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (12a)

¹H NMR spectrum of 5,5'-((2-bromophenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione) (13a)

¹³C NMR spectrum of 5,5'-((2-bromophenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione) (13a)

FTIR spectrum of 5,5'-((2-bromophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (13a)

Mass spectrum of 5,5'-((2-bromophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (13a)

¹H NMR spectrum of 5,5'-((4-nitrophenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione) (**14a**)

¹³C NMR spectrum of 5,5'-((4-nitrophenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione) (14a)

FTIR spectrum of 5,5'-((4-nitrophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (14a)

Mass spectrum of 5,5'-((4-nitrophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (14a)

¹H NMR spectrum of 5,5'-((3-nitrophenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione) (15a)

¹³C NMR spectrum of 5,5'-((3-nitrophenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione) (15a)

FTIR spectrum of 5,5'-((3-nitrophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (15a)

Mass spectrum of 5,5'-((3-nitrophenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (15a)

¹H NMR spectrum of 4-(bis(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)methyl)benzonitrile

(**16a**)

¹³C NMR spectrum of 4-(bis(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)methyl)benzonitrile

(**16a**)

¹H NMR spectrum of 3-(bis(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)methyl)benzonitrile

(**17a**)

¹³C NMR spectrum of 3-(bis(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)methyl)benzonitrile

(17a)

¹H NMR spectrum of 5,5'-(p-tolylmethylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione) (**18a**)

¹³C NMR spectrum of 5,5'-(p-tolylmethylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione) (18a)

FTIR spectrum of 5,5'-(p-tolylmethylene)bis(pyrimidine-2,4(1H,3H)-dione) (18a)

Mass spectrum of 5,5'-(p-tolylmethylene)bis(pyrimidine-2,4(1H,3H)-dione) (18a)

¹H NMR spectrum of 5,5'-(o-tolylmethylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione) (**19a**)

¹³C NMR spectrum of 5,5'-(o-tolylmethylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione) (19a)

FTIR spectrum of 5,5'-(o-tolylmethylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione) (19a)

Mass spectrum of 5,5'-(o-tolylmethylene)bis(pyrimidine-2,4(1H,3H)-dione) (19a)

¹H NMR spectrum of 5,5'-((4-(dimethylamino)phenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)dione) (**20a**)

¹³C NMR spectrum of 5,5'-((4-(dimethylamino)phenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)-

dione) (20a)

FTIR spectrum of 5,5'-((4-(dimethylamino)phenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione) (**20a**)

Mass spectrum of 5,5'-((4-(dimethylamino)phenyl)methylene)bis(pyrimidine-2,4(1H,3H)-

¹H NMR spectrum of 6,6'-((4-methoxyphenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione) (21a)

¹³C NMR spectrum of 6,6'-((4-methoxyphenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione)

(21a)

FTIR spectrum of 6,6'-((4-methoxyphenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione)

Mass spectrum of 6,6'-((4-methoxyphenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione) (21a)

¹H NMR spectrum of 5,5'-((3,4-dimethoxyphenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione) (**22a**)

¹³C NMR spectrum of 5,5'-((3,4-dimethoxyphenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)dione) (**22a**)

Mass spectrum of 5,5'-((3,4-dimethoxyphenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione)

(22a)

FTIR spectrum of 5,5'-((3,4-dimethoxyphenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione)

¹H NMR spectrum of 5,5'-((3,4,5-trimethoxyphenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)dione) (**23a**)

¹³C NMR spectrum of 5,5'-((3,4,5-trimethoxyphenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)dione) (**23a**)

FTIR spectrum of 5,5'-((3,4,5-trimethoxyphenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione) (23a)

Mass spectrum of 5,5'-((3,4,5-trimethoxyphenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione)

¹H NMR spectrum of 5,5'-((4-phenoxyphenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione)

(24a)

¹³C NMR spectrum of 5,5'-((4-phenoxyphenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione)

(24a)

FTIR spectrum of 5,5'-((4-phenoxyphenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione) (24a)

Mass spectrum of 5,5'-((4-phenoxyphenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (24a)

¹H NMR spectrum of 4-(bis(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)methyl)benzoic acid

(25a)

¹³C NMR spectrum of 4-(bis(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)methyl)benzoic acid

(25a)

FTIR spectrum of 4-(bis(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)methyl)benzoic acid

(25a)

¹H NMR spectrum of 3-(bis(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)methyl)benzaldehyde (26a)

FTIR spectrum of 3-(bis(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)methyl)benzaldehyde

¹H NMR spectrum of 6,6'-((3-(bis(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)methyl)phenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (27a)

yl)methyl)phenyl)methylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione) (27a)

yl)methyl)phenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (27a)

Mass spectrum of 6,6'-((3-(bis(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-

yl)methyl)phenyl)methylene)bis(pyrimidine-2,4(1H,3H)-dione) (27a)

¹H NMR spectrum of 6,6'-(naphthalen-1-ylmethylene)bis(pyrimidine-2,4(1*H*,3*H*)-dione) (**28a**)

FTIR spectrum of 6,6'-(naphthalen-1-ylmethylene)bis(pyrimidine-2,4(1H,3H)-dione) (28a)

Mass spectrum of 6,6'-(naphthalen-1-ylmethylene)bis(pyrimidine-2,4(1H,3H)-dione) (28a)

¹H NMR spectrum of 5-(hydroxy(4-nitrophenyl)methyl)pyrimidine-2,4(*1H*,3*H*)-dione (**1**)

¹³C NMR spectrum of 5-(hydroxy(4-nitrophenyl)methyl)pyrimidine-2,4(*1H*,3*H*)-dione (1)

FTIR spectrum of 5-(hydroxy(4-nitrophenyl)methyl)pyrimidine-2,4(*1H*,3*H*)-dione (1)

Mass spectrum of 5-(hydroxy(4-nitrophenyl)methyl)pyrimidine-2,4(1H,3H)-dione (1)

H. Fig. S2: 2D interaction diagrams of HIV CA with the compounds

I. Table S4 Percentage inhibition of bis(pyrimidine-2,4(1*H*,3*H*)-diones on HIV-1 p24 antigen production at $1 \mu g/ml$

Sample Code	% Inhibition at 1 µg/ml				
1a	4 %				
2a	20 %				
3a	23 %				
4a	3 %				
5a	28 %				
6a	11 %				
7a	74 %				
8a	69 %				
9a	58 %				
10a	20 %				
11a	7 %				
12a	22 %				
13a	65 %				
14a	43 %				
15a	42 %				
16a	12 %				
17a	10 %				
18a	21 %				
19a	64 %				
20a	7 %				
21a	5 %				
22a	19 %				
23a	32 %				
24a	33 %				
25a	16 %				
26a	7 %				
27a	20 %				
28a	22 %				

Sr.	Sample concentration	% Inhibition of samples					
No:	(µg/ml)	7a	8 a	9a	13a	19a	
1.	1000	90	97	93	88	89	
2.	500	63	83	86	70	78	
3.	250	55	70	77	61	55	
4.	125	42	51	63	52	48	
5.	62.5	30	32	50	39	35	
6.	31.25	<25	30	33	31	31	
7.	15.6	<25	<25	<25	<25	<25	
8.	7.8	<25	<25	<25	<25	<25	
9.	3.9	<25	<25	<25	<25	<25	
10.	1.95	<25	<25	<25	<25	<25	

J. Table S5 Inhibition of p24 of HIV-1C by bis(pyrimidine-2,4(1*H*,3*H*)-diones. Azidothymidine (AZT) was used as positive control and virus control was 1×10^4 PFU/ml.

K. Cytotoxicity studies

Cell cytotoxicity assay was performed using WST-1 (Roche, Basel, Switzerland) according to manufacturer's protocol. Mo7e and BA/F3 cells were plated in 96-well tissue culture plate at a concentration of 20,000 cells per well in 100 μ L of media and stimulated with different concentrations of compounds 7a, 8a, 9a, 13a and 19a for 24 hours. Cells were also treated only with DMSO to exclude solvent induced cytotoxicity. After incubation, 10 μ L of WST-1 reagent was added and absorbance was measured against a background control as blank using microplate (ELISA) reader at 440 nm. Statistical analysis was performed using GraphPad Prism v.6.0.1 (GraphPad Software, Inc., CA, US). P values of <0.05 are considered significant.