Supplementary Figure captions:

Supplementary Fig. 1. The schematic diagram of the synthetic routes for [VBTHEA]Cl (a) and P[VBTHEA]Cl (b).

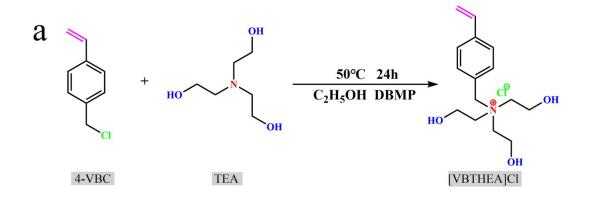
Supplementary Fig. 2. The photographs of the synthetic [VBTHEA]Cl and P[VBTHEA]Cl. (a) [VBTHEA]Cl when fortified at the ethanol volume of 30 mL, (b) [VBTHEA]Cl when fortified at the ethanol volume of 20 mL, and (c) [VBTHEA]Cl when fortified at the ethanol volume of 10 mL. (d) P[VBTHEA]Cl when fortified at the ethanol volume of 30 mL, (e) P[VBTHEA]Cl when fortified at the ethanol volume of 20 mL, and (f) P[VBTHEA]Cl when fortified at the ethanol volume of 10 mL.

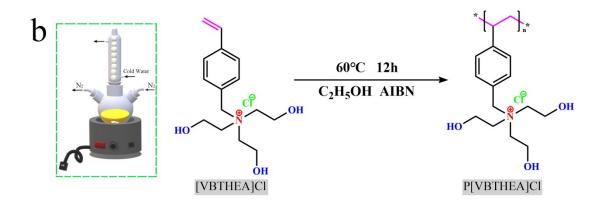
Supplementary Fig. 3. The profiles for each step in the QAP-EDSE procedures

Note: (a) addition of 8 mL sample solution; (b) addition of effervescent tablets; (c) the generation of CO₂; (d) homogenous solution after effervescence; (e) absorbents settle after the end of effervescence reaction; (e) solid-liquid phase separation after station.

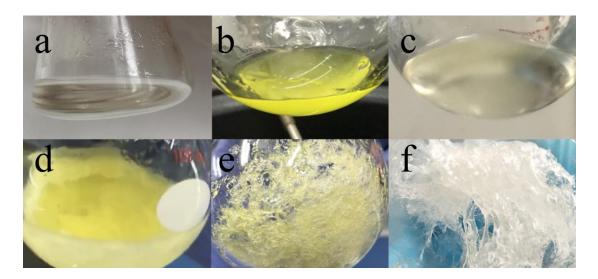
Supplementary Fig. 4. The photographs of the synthetic P[VBTHEA]Cl. (a) The fortified dosage of AIBN at 50 mg, (b) 60 mg, and (c) 70 mg.

Supplementary Fig. 5. Optimization of the synthetic conditions. (a) Effect of the ethanol volume on the yield of P[VBTHEA]Cl; and (b) Effect of the fortified amount of AIBN on the yield of P[VBTHEA]Cl.

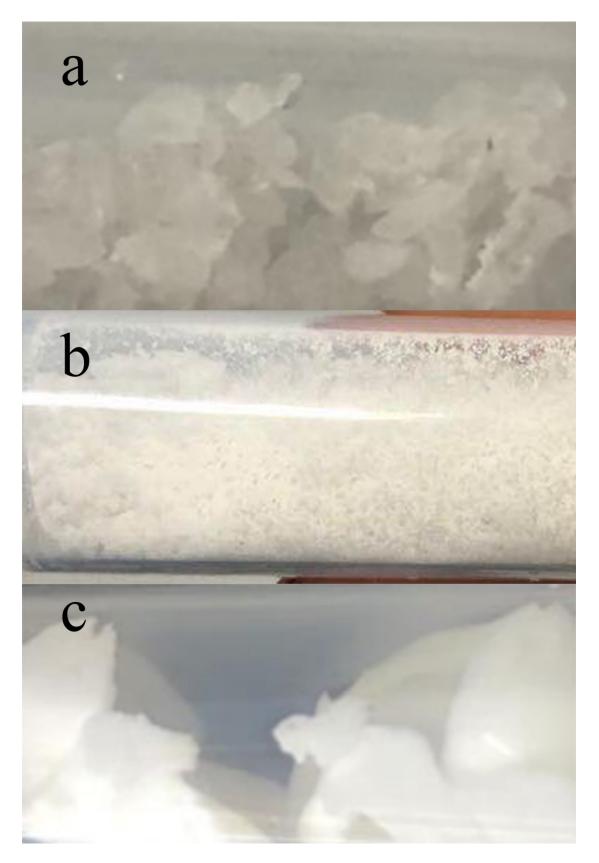

Supplementary Fig. 6. Total ion chromatograms of five kinds of sulfonamides in real-world water sample (20 μ g L⁻¹)

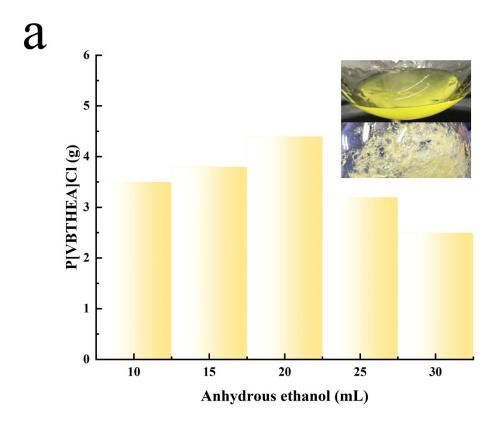

Supplementary Table legends:

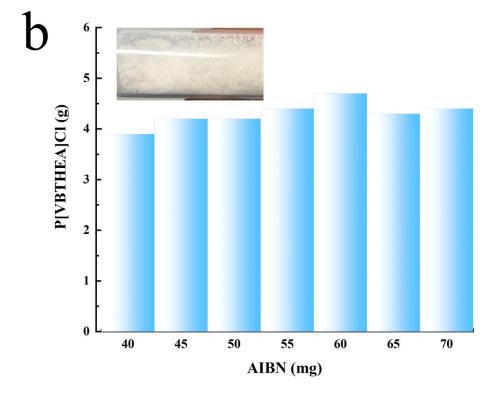
Supplementary Table 1. The physico-chemical properties and molecular structures of five SAs


Supplementary Table 2. Mass spectrometric parameters for five SAs

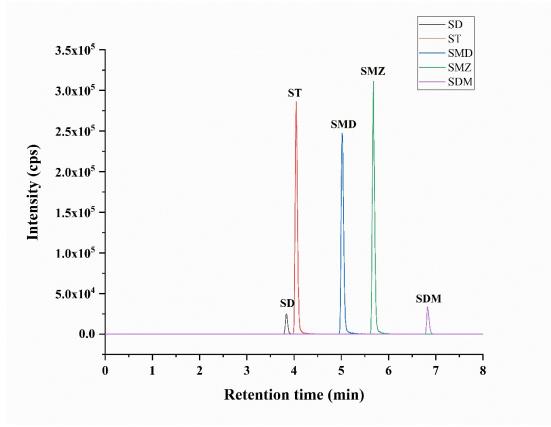
Supplementary Table 3. Effects of varying acid-base mass ratios on the physico-chemical properties of effervescent tablets


Supplementary Fig. 1


Supplementary Fig. 2



Supplementary Fig. 3



Supplementary Fig. 4

Supplementary Fig. 5

Supplementary Fig. 6

Compounds	CAS No.	M.W.	p <i>K</i> _{a,1}	$pK_{a,2}$	$\log^{K_{\rm OW}}$	Molecular structure
Sulfamethoxydiazine (SMD)	651-06-9	280.3	7.02	-	0.25	$H_2N \longrightarrow O = N \longrightarrow O = N \longrightarrow O = O = O = O = O = O = O = O = O = O$
Sulfadimethoxine (SDM)	122-11-2	310.33	6.2	-	0.78	$H_2N \longrightarrow O = CH_3$
Sulfathiazole (ST)	72-14-0	255.32	2.2	7.2	0.05	H_2N
Sulfamethoxazole (SMZ)	723-46-6	253.28	1.6	5.7	0.89	H_2N H_2N H_2N H_2N H_2N H_2N H_2N H_3 H_3N H_2N H_3N
Sulfadiazine (SD)	68-35-9	250.28	2.21	6.4	0.05	$H_2N \longrightarrow O \\ O \\ O \\ O \\ N \longrightarrow N $

Supplementary Table 1. The physico-chemical properties and molecular structures of five SAs

Compounds	Ionization	Parent ion	Product ion	Collision energy	Cone voltage
	mode	(m/z)	(m/z)	(eV)	(V)
SD	ESI^+	251.2	156.2/108.2	56	30
ST	ESI^+	256.2	156.1/108.2	58	33
SMD	ESI^+	281.1	156.2/108.2	64	36
SMZ	ESI^+	254.2	156.1/108.2	63	31
SDM	ESI^+	311.1	156.1/108.1	69	36

Supplementary Table 2. Mass spectrometric parameters for five SAs

Acid-base ratio/(g:g)	Disintegration time (s)	Solution pH after reaction	CO ₂ amount (mg)
1.50:1.00	131	4.59	10.30
1.25:1.00	137	5.19	15.67
1.00:1.00	153	6.63	12.62
1.00:1.25	174	6.90	12.51
1.00:1.50	111	7.03	9.77

Sunnlementary Table 3	. Effects of varying acid-base	mass ratios on the physico-c	hemical properties of	f effervescent tablets
Supplementary rable 5	. Directs of varying acta base	mass ratios on the physico c	nemieur properties o	