Structures, electronic and spectral properties of single-atom

transition metal-doped boron clusters MB₂₄- (M=Sc, Ti, V, Cr, Mn,

Fe, Co, and Ni)

Shi-Xiong Li,*a Yue-Ju Yang, De-Liang Chen, Zheng-Wen Long^b

^aSchool of Physics and Electronic Science, Guizhou Education University, Guiyang 550018, Guizhou, People's Republic of China. E-mail: leesxoptics@163.com

^bCollege of physics, Guizhou University, Guiyang 550025, Guizhou, People's Republic of China

(a) (0.00)[0.00]{0.00}

(d) (0.50)[0.48]{0.52}

(e) $(0.85)[0.86]{0.83}$

Figure. S1 Low-lying isomers of doped boron clusters ScB₂₄⁻. Values in parentheses are the relative energies (eV) of the five low-energy isomers for ScB_{24}^{-} at the PBE0/6-311+G* level. Values in square brackets are the relative energies (eV) of the five low-energy isomers for ScB_{24}^{-} at the TPSSH/6-311+G* level. Values in curly brackets are the relative energies (eV) of the five low-energy isomers for ScB_{24}^{-} at the PBE0-D3/6-311+G* level. The upper row is side view and the bottom row is top view.

(c) $(0.44)[0.38]{0.51}$

 $(c) (0.55)[0.39] \{0.52\}$

(a) (0.00)[0.00]{0.00}

(d) (0.57)[0.49]{0.56}

(e) (0.61)[0.47]{0.59}

Figure.S2 Low-lying isomers of doped boron clusters TiB_{24}^- . Values in parentheses are the relative energies (eV) of the five low-energy isomers for TiB_{24}^- at the PBE0/6-311+G* level. Values in square brackets are the relative energies (eV) of the five low-energy isomers for TiB_{24}^- at the TPSSH/6-311+G* level. Values in curly brackets are the relative energies (eV) of the five low-energy isomers for TiB_{24}^- at the PBE0-D3/6-311+G* level. The upper row is side view and the bottom row is top view.

(a) (0.00)[0.00]{0.00}

(c) $(0.38)[0.38]{0.38}$

(d) (0.47)[0.44]{0.47}

(e) (0.49)[0.45] $\{0.49\}$

Figure. S3 Low-lying isomers of doped boron clusters VB_{24}^- . Values in parentheses are the relative energies (eV) of the five low-energy isomers for VB_{24}^- at the PBE0/6-311+G* level. Values in square brackets are the relative energies (eV) of the five low-energy isomers for VB_{24}^- at the TPSSH/6-311+G* level. Values in curly brackets are the relative energies (eV) of the five low-energy isomers for VB_{24}^- at the PBE0-D3/6-311+G* level. Values in curly brackets are the relative energies (eV) of the five low-energy isomers for VB_{24}^- at the PBE0-D3/6-311+G* level. The upper row is side view and the bottom row is top view.

(c) $(0.02)[0.17]{0.06}$

(b) (0.02)[0.02]{0.02}

(a) (0.00)[0.00]{0.00}

(d) (0.08)[0.07]{0.11}

(e) (0.25)[0.17]{0.30}

Figure. S4 Low-lying isomers of doped boron clusters CrB_{24}^- . Values in parentheses are the relative energies (eV) of the five low-energy isomers for CrB_{24}^- at the PBE0/6-311+G* level. Values in square brackets are the relative energies (eV) of the five low-energy isomers for CrB_{24}^- at the TPSSH/6-311+G* level. Values in curly brackets are the relative energies (eV) of the five low-energy isomers for CrB_{24}^- at the PBE0-D3/6-311+G* level. The upper row is side view and the bottom row is top view.

(b) $(0.18)[0.07]\{0.25\}$

(a) (0.00)[0.00] $\{0.00\}$

(d) $(0.47)[0.30]{0.47}$

(e) $(0.61)[0.43]{0.65}$

Figure. S5 Low-lying isomers of doped boron clusters MnB_{24}^- . Values in parentheses are the relative energies (eV) of the five low-energy isomers for MnB_{24}^- at the PBE0/6-311+G* level. Values in square brackets are relative energies (eV) of the five low-energy isomers for MnB_{24}^- at the TPSSH/6-311+G* level. Values in curly brackets are the relative energies (eV) of the five low-energy isomers for MnB_{24}^- at the PBE0-D3/6-311+G* level. Values in curly brackets are the relative energies (eV) of the five low-energy isomers for MnB_{24}^- at the PBE0-D3/6-311+G* level. The upper row is side view and the bottom row is top view.

(c) $(0.21)[0.07]{0.21}$

Figure. S6 Low-lying isomers of doped boron clusters FeB_{24}^- . Values in parentheses are the relative energies (eV) of the five low-energy isomers for FeB_{24}^- at the PBE0/6-311+G* level. Values in square brackets are relative energies (eV) of the five low-energy isomers for FeB_{24}^- at the TPSSH/6-311+G* level. Values in curly brackets are the relative energies (eV) of the five low-energy isomers for FeB_{24}^- at the PBE0-D3/6-311+G* level. Values in curly brackets are the relative energies (eV) of the five low-energy isomers for FeB_{24}^- at the PBE0-D3/6-311+G* level. The upper row is side view and the bottom row is top view.

(d) (0.56)[0.41] $\{0.64\}$

(b) (0.45)[0.40]{0.45}

(a) (0.00)[0.00] $\{0.00\}$

(c) $(0.76)[0.68]{0.77}$

(e) (0.77)[0.55]{0.78}

Figure. S7 Low-lying isomers of doped boron clusters CoB_{24}^- . Values in parentheses are the relative energies (eV) of the five low-energy isomers for CoB_{24}^- at the PBE0/6-311+G* level. Values in square brackets are relative energies (eV) of the five low-energy isomers for CoB_{24}^- at the TPSSH/6-311+G* level. Values in curly brackets are the relative energies (eV) of the five low-energy isomers for CoB_{24}^- at the PBE0-D3/6-311+G* level. The upper row is side view and the bottom row is top view.

upper row is side view and the bottom row is top view.

(b)

(f)

(h)

Figure. S9 Total density of states (TDOS) of each cluster and partial density of states (PDOS) of the transition metal atom. (a) ScB₂₄⁻; (b) alpha spin for TiB₂₄⁻; (c) beta spin for TiB₂₄⁻; (d) VB₂₄⁻; (e) alpha spin for CrB₂₄⁻; (f) beta spin for CrB₂₄⁻; (g) MnB₂₄⁻; (h) alpha spin for FeB₂₄⁻; (i) beta spin for FeB₂₄⁻; (g) CoB₂₄⁻; (k) alpha spin for NiB₂₄⁻; (l) beta spin for NiB₂₄⁻. The dashed line highlights the position of HOMO (alpha HOMO or beta HOMO). The energy unit a.u. represent hartree and one hartree is 27.21 eV.

(b)

(c)

(e)

Figure. S10 Electron localization function (ELF) with the isovalue set to 0.60. (a) ScB_{24} ; (b) TiB_{24} ; (c) VB_{24}^{-} ; (d) CrB_{24}^{-} ; (e) MnB_{24}^{-} ; (f) FeB_{24}^{-} ; (g) CoB_{24}^{-} ;(h) NiB_{24}^{-} .

(b)

(c)

(d)

(f)

(e)

Figure. S11 Electron localization function (ELF) with the isovalue set to 0.7. (a) ScB_{24}^- ; (b) TiB_{24}^- ; (c) VB_{24}^- ; (d) CrB_{24}^- ; (e) MnB_{24}^- ; (f) FeB_{24}^- ; (g) CoB_{24}^- ; (h) NiB_{24}^- .

(b)

(c)

(d)

(e)

Figure. S12 Electron localization function (ELF) with the isovalue set to 0.80. (a) ScB_{24}^- ; (b) TiB_{24}^- ; (c) VB_{24}^- ; (d) CrB_{24}^- ; (e) MnB_{24}^- ; (f) FeB_{24}^- ; (g) CoB_{24}^- ; (h) NiB_{24}^- .

(d)

(b)

(c)

(e)

Figure. S13 Valence electron density with the isovalue set to 0.1. (a) ScB_{24}^{-} ; (b) TiB_{24}^{-} ; (c) VB_{24}^{-} ; (d) CrB_{24}^{-} ; (e) MnB_{24}^{-} ; (f) FeB_{24}^{-} ; (g) CoB_{24}^{-} ;(g) NiB_{24}^{-} .

(c)

(e)

Figure. S14 Valence electron density with the isovalue set to 0.14. (a) ScB_{24}^{-} ; (b) TiB_{24}^{-} ; (c) VB_{24}^{-} ; (d) CrB_{24}^{-} ; (e) MnB_{24}^{-} ; (f) FeB_{24}^{-} ; (g) CoB_{24}^{-} ;(g) NiB_{24}^{-} .

(b)

(c)

(e)

(g) (h) **Figure. S15** Valence electron density with the isovalue set to 0.20. (a) ScB_{24}^{-} ; (b) TiB_{24}^{-} ; (c) VB_{24}^{-} ; (d) CrB_{24}^{-} ; (e) MnB_{24}^{-} ; (f) FeB_{24}^{-} ; (g) CoB_{24}^{-} ; (g) NiB_{24}^{-} .

(b)

(c)

(d)

(e)

Figure. S16 Valence electron density with the isovalue set to 0.52. (a) ScB_{24}^{-} ; (b) TiB_{24}^{-} ; (c) VB_{24}^{-} ; (d) CrB_{24}^{-} ; (e) MnB_{24}^{-} ; (f) FeB_{24}^{-} ; (g) CoB_{24}^{-} ; (g) NiB_{24}^{-} .