Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Electronic Supporting Information

Recovery of bacterioruberin and proteins using aqueous solutions of surface-active compounds

Bárbara M.C. Vaz^{a,1}, Mariam Kholany^{a,1}, Diana C.G.A. Pinto^b, Inês P.E. Macário^{a,c}, Telma

Veloso^{a,c}, Tânia Caetano^c, Joana L. Pereira^c, João A.P. Coutinho^a, Sónia P.M. Ventura^{a,*}

^a CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro,

Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

^b LAQV - REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro,

Portugal

^c CESAM – Centre for Environmental and Marine Studies, Department of Biology,

University of Aveiro Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

¹ Both authors worked equally for this manuscript.

* Corresponding author.

E-mail address: spventura@ua.pt (S.P.M. Ventura).

Fig. S1. Photographs of the extracts obtained in the screening of solvents at 100 mM.

Fig. S2. UV-Vis spectroscopy of the extracts obtained in the screening of the non-ionic compounds at 250 mM.

Fig. S3. Pareto Chart of the CCRD (2³) regarding bacterioruberin yield of extraction (mg_{bacterioruberin}.g_{wet biomass}⁻¹) using aqueous solutions of Tween[®] 20.

Fig. S4. Predicted *vs.* experimental values of the CCRD (2³) regarding bacterioruberin yield of extraction (mg_{bacterioruberin}.g_{wet biomass}⁻¹) using aqueous solutions of Tween[®] 20.

Fig. S5. Yield of precipitation (mg_{protein}·g_{wet biomass}-1) for two consecutive protein precipitations using the same operational conditions, measured after proteins redissolution in PBS.

Fig. S6. SDS-PAGE of the recovered proteins redissolved in PBS after protein induced precipitation.

5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 fl (ppm)

Fig. S7. ¹H NMR spectroscopy of (A) pure Tween[®] 20 and (B) ethanolic fraction rich in bacterioruberin (after the polishing step) dissolved in D₂O.

Fig. S8. Chemical structures of bacterioruberin (85 %) and monoanhydrobacterioruberin (15 %) identified by UHPLC-MS analysis.

Fig. S9. Molecular structures and abbreviation names of the cationic (A), anionic (B), non-ionic (C), and non-tensioactive (D) compounds screened in this work.

Table S1. List of the surface-active compounds tested to recover bacterioruberin withthe respective indication of their success or unsuccess in the extraction.

	Surface-active	Succoss	Observations			
	compound	Juccess	Observations			
			Formed 2 phases, inviable to read UV-Vis			
	[C ₈ C₁im]Cl	x				
			spectra			
		,	White cloudy initial solution but viable to read			
	$[C_{10}C_1]$ m $[C_1]$	√	UV-Vis spectra			
			-			
	[C ₁₄ C ₁ im]Cl	\checkmark	-			
			White cloudy initial solution but viable to read			
	[C ₁₆ C ₁ im]Cl	\checkmark	UV-Vis spectra			
onic						
Cati	[N _{1,1,1,10}]Br		-			
	[N _{1,1,1,12}]Br	\checkmark	-			
	[N _{1,1,1,14}]Br	\checkmark	-			
	[N _{1,1,1,16}]Br	\checkmark	-			
	[C1cpv]Cl		_			
	[P。。。。]Br	x	Biomass did not settle in centrifuge; white			
	[1 8,8,8,8]		cloudy initial solution			
	[P _{4,4,4,14}]Cl	\checkmark	-			
	SDBS	x	Biomass did not settle in centrifuge			
onic	SDS	√	Very slimy			
Anic	ACT		Formed 2 phones white classificities and the			
	AUT	X	Formed 3 phases; white cloudy initial solution;			

			very slimy inviable to separate mixture			
	Tween [®] 20	\checkmark	Very slimy			
	Tween [®] 80	\checkmark	Very slimy			
	Triton™ X-114	./	Formed 2 phases; slimy solution but possible to			
$\begin{tabular}{ c c c c } \hline Triton^{TM} X-114 \\ \hline Merpol* A \\ \hline Merpol* A \\ \hline Genapol* X-080 \\ \hline Genapol* C-100 \\ \hline [C_4C_1im]Cl \\ \hline [C_6C_1im]Cl \\ \hline [P_{4,4,4,4}]Cl \\ \hline \end{array}$		separate from the sample				
ionic			Formed 2 phases; very slimy inviable to			
Non-	Merpol [®] A	х	separate mixture from sample; white cloudy			
			initial solution			
	Genapol [®] X-080	х	Biomass did not settle in centrifuge; white			
		~	cloudy initial solution			
	Genapol [®] C-100	\checkmark	-			
	[C ₄ C ₁ im]Cl	х	Biomass did not settle in centrifuge			
Non-tensioactive Non-ionic	[C ₆ C₁im]Cl	х	Biomass did not settle in centrifuge			
	[P _{4,4,4,4}]Cl	х	Biomass did not settle in centrifuge			
ve	[P _{4,4,4,4}]Br	х	Formed 2 phases, inviable to read UV-Vis			
sioacti			spectra			
n-tens	[N _{4,4,4,4}]Cl	х	Biomass did not settle in centrifuge			
No	[N _{1,1,1,6}]Br	х	Biomass did not settle in centrifuge			
	[C₃mpip]Cl	х	Biomass did not settle in centrifuge			
	[C ₄ mpyr]Cl	х	Biomass did not settle in centrifuge			
	[C₄py]Cl	х	Biomass did not settle in centrifuge			

Table S2. Real values used in the optimization process by CCRD (2^3) expressed by bacterioruberin yield of extraction (mg_{bacterioruberin}.g_{wet biomass}⁻¹) using aqueous solutions of Tween[®] 20.

	SLR (g _{wet biomass} .	t	C _{Surf}	Yield of extraction
Run	mL _{solvent} -1)	(min)	(mM)	(mg _{bacterioruberin} .g _{wet biomass} -1)
1	0.118	23.0	230.0	0.330
2	0.282	23.0	230.0	0.276
3	0.118	67.0	230.0	0.283
4	0.282	67.0	230.0	0.269
5	0.118	23.0	370.0	0.111
6	0.282	23.0	370.0	0.120
7	0.118	67.0	370.0	0.213
8	0.282	67.0	370.0	0.137
9	0.0622	45.0	300.0	0.331
10	0.338	45.0	300.0	0.231
11	0.200	8.04	300.0	0.234
12	0.200	82.0	300.0	0.272
13	0.200	45.0	182.4	0.300
14	0.200	45.0	417.6	0.128
15	0.200	45.0	300.0	0.232
16	0.200	45.0	300.0	0.298
17	0.200	45.0	300.0	0.273
18	0.200	45.0	300.0	0.275

Table S3. Effect of the estimates for bacterioruberin yield of extraction (mg_{bacterioruberin}.g_{wet biomass}⁻¹) using aqueous solutions of Tween[®] 20, optimized by the CCRD (2³) with significant factors at 95 % confidence level.

Factor	Effect	Standard error	Calculated t*	p-value
Mean/Interaction	0.257	0.0107	24.1	0.000
SLR (g _{wet}				
	-0.0443	0.0185	-2.39	0.0312
$_{\text{biomass}}$.mL _{solvent} ⁻¹) – (X1)				
C _{Surf} (mM) – (X3)	-0.127	0.0185	-6.86	0.000
C_{Surf} (mM) – (X3 ²)	-0.0475	0.0185	-2.56	0.0225

*Degrees of freedom.

Table S4. Predicted *vs.* experimental values (real) obtained by the fitted model and the respective relative deviation (%) from the independent variables fixed at the optimum conditions for bacterioruberin yield of extraction (mg_{bacterioruberin}.g_{wet biomass}⁻¹) using aqueous solutions of Tween[®] 20. V1, V2, and V3 represent the validation assays.

			Yield of o			
	SLR (gwet biomass. C _{Surf} (mgbacterioruberin.gwet biomass		rin• g wet biomass ⁻¹)	Relative		
Assay	mL _{solvent} -1)	(mM)	Experimental	Predicted	deviation	
			values	values	(%)	
	X1	X3	Y	Predicted Y		
V1			0.373		11.7	
V2	0.06224	182.4	0.361	0.329	8.84	
V3			0.384		14.3	
Mean of deviation						

Table S5. Classification of the surface-active compounds used in this work, their respective critical micellar concentration (CMC), purity, CAS number, and supplier.

[C ₁₂ C ₁ im]Cl	1-dodecyl-3-methylimidazolium	Cationic	15 ¹	98 wt%	114569-84-5	loLiTec
	chloride					
[C ₁₄ C ₁ im]Cl	1-methyl-3-	Cationic	4 ¹	98 wt%	171058-21-2	IoLiTec
Surface-active	Designation tetradecylimidazolium chloride	Classification	CMC (mM) /	Purity	CAS Number	Supplier
[C ₁₆ C ₁ im]Cl	1-hexadecyl-3-	Cationic	1.26 ²	>98 wt%	61546-01-8	loLiTec
[C ₃ mpip]Cl	1-methyl-1-propylpiperidinium methylimidazolium chloride	Non-tensioactive	-	99 wt%	1383436-85-8	loLiTec
[C ₁₆ py]Cl.H ₂ O	Hexadecylpyridinium chloride	Cationic	0.96 ³	99.0 - 102.0	6004-24-6	Sigma-Aldrich
[C ₄ C ₁ im]Cl	1-butyl-3-methylimidazolium monohydrate	Non-tensioactive	-	99 wt% wt%	79917-90-1	loLiTec
[N _{1.1.10}]Br	Decyltrimethylammonium	Cationic	25.2 ⁴	99 wt%	2082-84-0	Tokyo Chemical
[C₄mpyr]Cl	1-butyl-1-methylpyrrolidinium bromide	Non-tensioactive	-	99 wt%	479500-35-1	loLiTec Industry
[N _{1.1.1.12}]Br	Dodecyltrimethylammonium	Cationic	14 ⁵	99 wt%	1119-94-4	Alfa Aesar
[C₄py]Cl	1-butylpyridinium chloride bromide	Non-tensioactive	-	98 wt%	1124-64-7	loLiTec
[N _{1,1,1,14}]Br	Tetradecyltrimethylammonium	Cationic	3.6 ⁶	98 wt%	1119-97-7	Alfa Aesar
[C ₆ C ₁ im]Cl	1-hexyl-3-methylimidazolium bromide chloride	Non-tensioactive	900 ¹	98 wt%	171058-17-6	loLiTec
[N _{1,1,1,16}]Br	Hexadecyltrimethylammonium	Cationic	0.98 ³	99 wt%	57-09-0	Merk
[C ₈ C ₁ im]Cl	1-methyl-3-octylimidazolium bromide chloride	Cationic	220 ¹	99 wt%	64697-40-1	loLiTec
[N _{1,1,1,6}]Br	Hexyltrimethylammonium	Non-tensioactive	-	98 wt%	2650-53-5	Alfa Aesar
[C ₁₀ C ₁ im]Cl	1-decyl-3-methylimidazolium bromide chloride	Cationic	55 ¹	98 wt%	171058-18-7	loLiTec

[N _{4,4,4,4}]Cl	Tetrabutylammonium chloride	Non-tensioactive	-	97 wt%	1112-67-0	Sigma-Aldrich
[P _{4,4,4,14}]Cl	Tributyltetradecylphosphonium chloride	Cationic	4.69 ⁴	95 wt%	81741-28-8	loLiTec
[P _{4,4,4,4}]Br	Tetrabutylphosphonium bromide	Non-tensioactive	-	95 wt%	3115-68-2	loLiTec
[P _{4,4,4,4}]Cl	Tetrabutylphosphonium chloride	Non-tensioactive	-	95 wt%	2304-30-5	loLiTec
[P _{8,8,8,8}]Br	Tetraoctylphosphonium bromide	Cationic	nd	-	23906-97-0	Cytec
AOT	Dioctyl sulfosuccinate sodium salt	Anionic	2.1 ⁷	96 wt%	577-11-7	Sigma-Aldrich
Genapol [®] C-100	-	Non-ionic	0.075 ^{8*}	-	61791-13-7	Sigma-Aldrich
Genapol [®] X-080	Polyethylene glycol monoalkyl ether	Non-ionic	0.081 ⁹	-	9043-30-5	Sigma-Aldrich
Merpol [®] A	-	Non-ionic	0.005 % ^{10*}	-	37208-27-8	Sigma-Aldrich

SDS	Sodium dodecylsulfate	Anionic	8 ³	pharma	151-21-3	Panreac
				grade		
SDBS	Sodium dodecyl-	Anionic	1.25 ³	technical	25155-30-0	Sigma-Aldrich
	benzenesulfonate			grade		
Triton [™] X-114	Polyethylene glycol tert-	Non-ionic	0.29 11	lab grade	9036-19-5	Acros Organics
	octylphenyl ether					
Tween [®] 20	Polyethylene glycol sorbitan	Non-ionic	0.078 ³	-	9005-64-5	Acros Organics
	monolaurate					
Tween [®] 80	Polyethylene glycol sorbitan	Non-ionic	0.014 ³	-	9005-65-6	Sigma-Aldrich
	monooleate					

* Manufacturer data.

nd – not determined due to low solubility in water.

References

- M. Blesic, M. H. Marques, N. V. Plechkova, K. R. Seddon, L. P. N. Rebelo and A. Lopes, *Green Chem.*, 2007, 9, 481–490.
- 2 C. Jungnickel, J. Łuczak, J. Ranke, J. F. Fernández, A. Müller and J. Thöming, Colloids Surfaces A Physicochem. Eng. Asp., 2008, **316**, 278–284.
- Y. Shi, H. Q. Luo and N. B. Li, Spectrochim. Acta Part A Mol. Biomol. Spectrosc.,
 2011, 78, 1403–1407.
- F. A. Vicente, I. S. Cardoso, T. E. Sintra, J. Lemus, E. F. Marques, S. P. M. Ventura and J. A. P. Coutinho, *J. Phys. Chem. B*, 2017, **121**, 8742–8755.
- 5 M. A. Bahri, M. Hoebeke, A. Grammenos, L. Delanaye, N. Vandewalle and A. Seret, *Colloids Surfaces A Physicochem. Eng. Asp.*, 2006, **290**, 206–212.
- S. P. Moulik, M. E. Haque, P. K. Jana and A. R. Das, *J. Phys. Chem.*, 1996, **100**, 701–708.
- J. K. Salem, I. M. El-Nahhal and S. F. Salama, *Chem. Phys. Lett.*, 2019, **730**, 445–450.
- 8 Merk, Genapol[®] C-100, https://www.sigmaaldrich.com/PT/en/product/sigma/61028, (accessed 24 October 2021).
- E. Cordisco, C. N. Haidar, R. Goñi, B. B. Nerli and L. P. Malpiedi, *Fluid Phase Equilib.*,
 2015, **393**, 111–116.
- 10 Stepan, MERPOL[®] A, https://www.stepan.com/content/dam/stepan-dotcom/webdam/website-product-documents/productbulletins/surfactants/MERPOLA.pdf, (accessed 25 March 2022).
- S. Wu, F. Liang, D. Hu, H. Li, W. Yang and Q. Zhu, *Anal. Chem.*, 2020, **92**, 4259–4265.