Highly-Stable Flexible Pressure Sensor Using Piezoelectric Polymer

Film on Metal Oxide TFT

Taiyu Jin,^a Sang-Hee Ko Park^b and Da-Wei Fang*^a

^aInstitute of Rare and Scattered Elements, College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.

^bSmart & Soft Materials & Devices Laboratory (SSMD), Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.

Fig. S1 Transfer characteristics of a-IGZO TFTs with various active widths. The length of the TFT channel was fixed as 20 μ m, while the width of the TFT channel varies from 40 μ m to 2560 μ m.

Force stand

Semiconductor Analyzer

Fig. S2 Measurement setup for the pressure sensor.

Fig. S3 Voltage generated across the piezoelectric film when pressure is applied.

Fig. S4 Transfer characteristics of a-IGZO TFT measured outside the electromagnetically isolated box.

Fig. S5 Photo images of a piece of debris (a) away and (b) close to the sensor. (c) Current response with a piece of debris gradually approaches, slowly approaches, and rapidly approaches to the sensor.

Fig. S6 Current response with high-speed pressures applied to the sensor.