Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Quasi-Two-Dimensional α -Molybdenum Oxide Thin Film Prepared by Magnetron Sputtering for Neuromorphic Computing

Zhenfa Wu,^a Peng Shi,^a Ruofei Xing,^a Yuzhi Xing,^a Yufeng Ge,^a Lin Wei,*b Dong Wang,^a Le Zhao,^c Shishen Yan^a and Yanxue Chen*a

^aSchool of Physics, and State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China

^bSchool of Microelectronics, Shandong University, Jinan 250100, China

^cSchool of Electronic and Information Engineering, Qilu University of Technology, Jinan 250353, China

^{*} Corresponding author. E-mail: cyx@sdu.edu.cn (Y. X. Chen), wl2003@sdu.edu.cn (L. Wei)

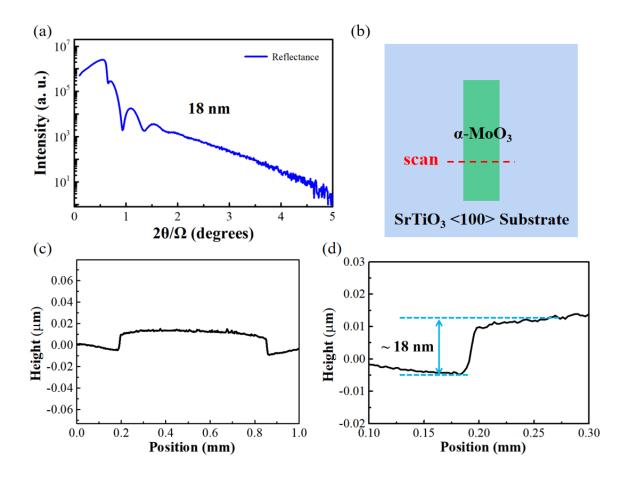


Fig. S1. The thickness characterization of α -MoO₃ thin film. (a) The X-ray reflectance spectrum of α -MoO₃ thin film. (b) Schematic image of the α -MoO₃ bar grown on SrTiO₃ substrate through a hard mask. (c, d) The step profiler spectrum of the α -MoO₃ bar.